<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
|
|
|
- ようじろう みねむら
- 9 years ago
- Views:
Transcription
1
2 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行当時のものです.
3 A B F E 7 C D URL FAX
4 MRAC MRAC I. Bar-Kana 4 2
5 ii *10 -% SAC 1 SAC SAC SAC SAC SAC PID SAC 10
6 iii 2008
7 ... viii SAC
8 v
9 vi 9 PID PID PID PID PID
10 vii PID PID A 194 B 3.2 φ {i} γ M C D E F
11
12 SAC PID AD/DA
13 adaptive control [1.1] 1950 [1.2] model reference adaptive control MRAC [1.3] [1.4]
14 1.2 3 [1.5] [1.6] n m r [1.7] (E.J. Davison) [1.8] n m + r 1 MRAC
15 SAC almost strictly positive real ASPR [1.9] [1.10] simple adaptive control SAC SAC H. Kaufman 1982 [1.11] [1.12] 2 ASPR J.R. Broussard command generator tracker : CGT [1.13] I. Bar-Kana parallel feedforward compensator : PFC PFC ASPR SAC [1.14] [1.15] SAC [1.16] A.L. Fradkov [1.17] CGT
16 1.4 5 shunt filter SAC PFC PFC [1.18] [1.19] PFC ladder network form PFC PFC PFC [1.20]. SAC [1.21] [1.22] SAC positive real PR strictly positive real SPR - Kalman-Yakubovich SAC ASPR CGT 3 SAC PFC 4 1 SAC SAC ASPR 5 PFC SAC ASPR PFC SAC 7 SAC SAC SAC PFC SAC
17 6 1 9 PFC PID PID 10 PFC 11 PFC SAC PFC SAC SAC de Prony [1.23]
18 SAC 6 SAC 1 SAC SAC ASPR SAC SAC 1 SAC 6.1 SAC 1 SAC [6.1] [6.2] n m ẋ(t) = Ax(t) + Bu(t) 6.1 y(t) = Cx(t) x R n y R m u R m n m m n m n ẋ m (t) = A m x(t) + B m u m (t) 6.2 y m (t) = C m x m (t)
19 ASPR y m (t) CGT u m (t) i u (i) m (t), i = 0, 1,, m SAC u(t) = K(t) z(t) 6.3 z(t) = [e(t) T, x m (t) T, u m (t) T ] T e(t) = y(t) y m (t) K(t) σ- K(t) = K I (t) + K P (t) K I (t) = e(t) z(t) T Γ I σ I (t) K I (t) K P (t) = e(t) z(t) T Γ P e(t) T e(t) σ I (t) = σ e(t) T e(t) + σ 2 Γ I =Γ I T > 0, Γ P =Γ P T > 0, σ 1,σ 2 > σ k = u (i) m (t) 0, i = 0, 1,, m σ I = 0 lim t e(t) = SAC 1
20 SAC 2 ASPR ASPR 2 ASPR PFC SAC ASPR ASPR ẋ(t) = x(t) + u(t) y(t) = x(t) y m (t) = G m (s) [ u m (t) ] [ G m (s) = diag 1 s + 1, 1 s + 1 u m (t) = [ u m1 (t), u m2 (t) ] T ] u m1 (t) 1 u m2 (t) 2 SAC Γ I = diag [ 10 4 I 2, 10 2 ] I 4, ΓP = diag [ 10 3, 10 2, 10 2, 30, 30 ], σ 1 = 0.01, σ 2 = 0.05 ASPR SAC 6.1 a b SAC c d
21 66 6 Outputs y 1 y m1 y 2 y m Time [s] a (y 1 (t), y 2 (t)) (y m1 (t), y m2 (t)) Errors e 1 e Time [s] c (e 1 (t), e 2 (t)) Control inputs Adaptive gain Time [s] b (u 1 (t), u 2 (t)) u 1 u 2 k e1 k e Time [s] d (k e1 (t), k e2 (t)) 6.1 ASPR ASPR PFC ASPR g(t) ẋ(t) = x(t) + u(t) + g(t) y(t) = x(t) 2sin(2πt/5) cos (2πt/7) g(t) = sin (2πt/10) 2cos(2πt/5) 6.7
22 ẋ(t) = x(t) u(t) + g(t) y(t) = x(t) 2sin(2πt/5) cos (2πt/7) g(t) = sin (2πt/10) 2cos(2πt/5) 2sin(2πt/3) 1 1 2s 2 6s + 5 2s 2 6s + 7 G(s) = (s 2 3s + 3)(s 2 3s + 1) s 2 3s + 4 3s 2 9s (s 1)(s 2)(s 3) G(s) = 2 (s 2)(s 5) 2 (s 1)(s 4) 2 (s 4)(s 5) ASPR PFC ASPR 1 F(s) = diag [ 0.08/(s + 5), 0.08/(s + 5) ] F(s) = F 1 (s) + F 2 (s) 6.12
23 68 6 F(s) = diag [ 0.1/(s + 20) 2, 0.01/(s + 20) ] F(s) = diag [ 0.01/(s + 20), 0 ] Γ I = diag [ 10 8 I 2, 10 3 ] I 4, ΓP = diag [ 10 6 I 2, 10 2 ] I 4 σ 1 = 0.01, σ 2 = y y m y 2 y m Time [s] a (y 1 (t), y 2 (t)) (y m1 (t), y m2 (t)) Outputs Control inputs u 1 u Time [s] b (u 1 (t), u 2 (t)) Errors Time [s] c (e 1 (t), e 2 (t)) e 1 e 2 Adaptive gain k e1 k e Time [s] d (k e1 (t), k e2 (t)) 6.2 ASPR 1
24
25 SAC 15 least squares sufficiently rich
26 [15.1] [15.2] de Prony 15.1 n 1 n λ 1 λ n n y(t) = α i e λit, t i =1 (α i,λ i ) exponential analysis method [15.3] n α i G(s) = 15.2 s + λ i =1 i 15.1 y(t) T 2n y(0), y(t),, y{(2n 1)T} e λ it = x i, y j = y ( jt) i = 1,, n, j = 0, 1,, 2n y 0 = α α n y 1 = α 1 x α n x n. 15.4
27 y k = α 1 x 1 k + + α n x n k. y 2n 1 = α 1 x 1 2n α n x n 2n 1 2n α i, x i, i = 1,, n 2n [15.3] x 1,, x n (x x 1 )(x x 2 ) (x x n ) = a n x n + a n 1 x n a 1 x 1 + a 0 = 0, a n = a 0,, a n 1 (15.6) n x i λ i = 1 T log x i, i = 1,, n 15.7 α i 15.4 y 2n 15.4 k a 0 k + 1 a 1 k + 2,, k + n a 2,, a n n a 0 y k + a 1 y k a n y k+n = α i x k i (a 0 + a 1 x i + + a n x n i ) i =1 x i a 0 y k + a 1 y k a n y k+n = k + 1, k + 2, a 0 y j + a 1 y j a n y j+n = 0, j = k, k + 1,, k + n, a i β = (N T N) 1 N T y β = a 0. a n 1, y = y k+n. y k+2n. y k y k+1 y k+n 1..., N = y k+n 1 y k+n y k+2n N T N λ i [15.4] 15.6 n x i
28 α i X T X α = (X T X) 1 X T y α = α 1. α n, y = y k. y k+n. k k k x 1 x 2 x n..., X = k+n k+n k+n x 1 x 2 x n n PID PID 1 (3 ) [15.4] K T L 3 K G(s) = 1 + Ts e Ls K T L ŷ(t) = αe λ(t τ) + γ, y(t) = ŷ(t) γ = αe λt, α = αe λτ t τ t τ γ τ λ >0 y k τ λ γ
29 λ α e λt = x y k = αx k, k = k 0, k 0 + 1, k 0 T τ>0 k 0 a 0 + a 1 x = 0, a 1 = a a 0 y k + y k+1 = 0, k = k 0, k 0 + 1,, k 0 + k 1, k y k ỹ k a λ = 1 T log( a 0) α 2 α τ ŷ(τ) = α = γ, τ = 1 λ log α α T = 1 λ, L = τ, K = γ Model A : G(s) = 1 (s + 1) 8 [15.2] G(s) = s + 1 e s k 0 ỹ(k) k 0 ỹ(k) 40 k 0 a 0
30 IAE integral of absolute value of error [15.6] Response Model A 70% 100% 40% 100% 10% 20% Times [s] n 1 G(s) g(t) n α i G(s) = s + λ i =1 i n g(t) = α i e λ it i = t T 2 u(t) 1, 0 t T 1 u(t) = , T 1 t T 2 T 1 T 2
31 t T 1 t t n n y(t) = g(t τ) u(τ) dτ = α i e λi(t τ) α i dτ = (1 e λit ) λ i =1 i =1 i t = T 1 n α i y(t 1 ) = (1 e λ it 1 ) λ i i =1 T 1 t T 2 y(t 1 ) n y(t) = y(t 1 ) b i e λ i(t T 1 ) i =1 t = T α i = y(t 1 ) b i y(t) n y(t) = α i e λ i(t T 1 ) i =1 λ i t = T 1 α i α i = α i λ i e λ it T 1 t T 2 (α i,λ i ) high n AIC AIC low n [15.6]
32 high n high n IAE ŷ(t) y(t) IAE = 1 N y(kt) ŷ(kt) N k=1 T N high n n high n = n :min 1 N y(kt) ŷ n n (kt) N k =1 high n, [15.7] AIC AIC [15.8] [15.6] AIC Γ=α N g i g 2 T log N T g 2 + 4n i + β N G i G 2 ω log N ω G 2 + 4n i
33
34 , 120, , , AIC 172, 189 ASPR 4, 14 CGT 4, 16 CHR 129 DI 102 DSAC 82, 86 DSAC 80 FP 102 H 36 IAE 187 IMC 129 LQ 160 m 24 OFEP 102 OFP 102 OFSP 102 PFC 4 PID 115 PID 112 PR 5, 8 SAC 4 SAC 41 SAC 44 SAC 42 SMC 131 SPR 5, 8 VSS 131 Z-N 129 σ , 188, , , 29, , ASPR , , , 22, , , , , DSAC SMC 179 SMC
35 , 8 47 I , 145 9, 22, 194 8, SAC 63, 64 18, 112 SPR 19 ASPR CGT PFC , PID 126 PID 125 PID , , PFC 107 D P PFC , 183 8, , , PFC 32, 55 CGT 78 SAC PFC ASPR 77 SPR 76 PR , 46 SAC 49 SAC 70 48
36 2008 JCLS Printed in Japan ISBN
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>
入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...
<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>
信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
新 Excel コンピュータシミュレーション サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/084871 このサンプルページの内容は, 初版 1 刷発行当時のものです. Microsoft Excel Excel Visual Basic Visual Basic 2007 Excel Excel
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>
スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance
重力方向に基づくコントローラの向き決定方法
( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro [email protected] 1 M M v 0, v 1, v 2 v 0 v
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
08-Note2-web
r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1
ohp_06nov_tohoku.dvi
2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.
最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.
最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin
2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
地盤環境振動の対策技術-00-前付.indd
地盤環境振動の対策技術 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/048561 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 23 25 28 8 ii 1 8 2 9 3 10 4 11 5 12 6 13 7 iii 1 1 1.1 1.1.11 1.1.22
,, 2. Matlab Simulink 2018 PC Matlab Scilab 2
(2018 ) ( -1) TA Email : [email protected], [email protected] : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................
2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =
1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,
213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................
1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u
( ) LPV( ) 1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u m 1 m m 2, b 1 b b 2, k 1 k k 2 (2) [m b k ( ) k 0 b m ( ) 2 ẋ = Ax, x(0) 0 (3) (x(t) 0) ( ) V (x) V (x) = x T P x >
フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/084712 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2007 10 1 Scilab 2 2017 2 1 2 1 ii 2 web 2007 9 iii
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
IA [email protected] Last updated: January,......................................................................................................................................................................................
Chap9.dvi
.,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
sikepuri.dvi
2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z
main.dvi
5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2 104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2
知能科学:ニューラルネットワーク
2 3 4 (Neural Network) (Deep Learning) (Deep Learning) ( x x = ax + b x x x ? x x x w σ b = σ(wx + b) x w b w b .2.8.6 σ(x) = + e x.4.2 -.2 - -5 5 x w x2 w2 σ x3 w3 b = σ(w x + w 2 x 2 + w 3 x 3 + b) x,
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y
5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors
1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)
4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h
IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r
これわかWord2010_第1部_100710.indd
i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv
パワポカバー入稿用.indd
i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84
これでわかるAccess2010
i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x
n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt
LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)
338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
DE-resume
- 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
<4D F736F F D B B BB2D834A836F815B82D082C88C60202D B2E646F63>
入社 5 年目までに身につけたい建設エンジニアの仕事術 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/087141 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 3 5 2009 1 ii 1 1 1 2 3 3 6 13 1.1 14 1.2 15 1.3 17 1.4
平成18年版 男女共同参画白書
i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y
KENZOU
KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................
