& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),
|
|
|
- ぜんま のたけ
- 7 years ago
- Views:
Transcription
1 .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov random fields and Bayesian inference. Some practical algorithms are constructed by applying belief propagation methods. Markov random fields and belief propagation methods can be regarded as one of statistical-mechanical approaches to probabilistic information processing. In the present paper, we review some fundamental frameworks and statisticalmechanical approaches of probabilistic image processing.. (Genrrative Model).,,, Graduate School of Information Sciences, Tohoku University.,.,,,..,.,. (Bayes Formula).., (Compulational Complexity).,., (Belief Propagation) 98,,.,,, (Statistical-Mechanical Informatics). ) 3),..,,.., (Bayes Formula),,,. (Bayesian Inference). (Prior Probability),, (Posterior Probability). 9/6/ c 9 Information Processing Society of Japan
2 & 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), x (State Vector). i (Random Variable) X i, X = (X, X,, X V ) T, (Random Vector). x Pr{X = x}. Pr{X = x}...,..,. Pr{X = x},. Pr { X = x } {i,j} E exp ( α(x i x j ) ) () E {i, j}. V =,,, 3,. E = { {, }, {, 3}, {3, }, {5, 6}, {6, 7}, {7, 8}, {9, }, {, }, {, }, {, 5}, {, 6}, {3, 7}, {, 8}, {5, 9}, {6, }, {7, }, {8, } } (). V E (V, E) x = (x, x,, x ) T. (V, E) Pr{X = x}. &/3 5 '6 ' ( &/3 ) 3 * 3 + ( 3, ) ) 3 * * * ,, ) 3E- * 3F&G. + 3F&?&, 3H& - &/. && & 5 798:<;%=?> 7@;A=:<;B;%>C7@;B;A:<;BD> Lmn?opqb # $!!" #%$ IKJMLON5PFQRP<STPVURPFWXPZYOPZ[\PH]\PF^XP_N6`\P_NaN5PN5Q b cdjelxfn5pfq ghp@fiqrp<sjghp!fkstpvu ghp!fiwxphyrgp@fby\pz[xgp@fb[\pz]xgp@fb^\pn6`xgp@fnl`\pnmnoghp@fn6òpnmnoghp fnmnlp_n5q ghp@fnlpfwtghp!fqrphyrghp!fkstph[rgp@furpz]xgp@fbw\ph^tghp@fayopn6`xgp@fa[opnmnoghp!fb]\p_n5q gb x () Pr{X = x}. (Q = ). (). V = {, }, E = { {, } } x (V, E). x =, x,,. Pr{X = } = Pr{X = } > Pr{X = } = Pr{X = } (3) ( ).. 9/6/ V = {, }, E = {, } x = (, ) T, (, ) T, (, ) T, (, ) T () Pr{X = x}. c 9 Information Processing Society of Japan
3 9/6/ V = {,, 3,, 5, 6, 7, 8, 9} () E = { {, }, {, 3}, {, 5}, {5, 6}, {7, 8}, {8, 9}, {, }, {, 5}, {3, 6}, {, 7}, {5, 8}, {6, 9} } (5) (V, E) 5. 5 i, x i = ( i V \{5}) 5 x 5 = x 5 = Pr{X = x} x 5 = ( 3 ). 3 V = {,,, 9}, E (5) 5, x i = ( i V \{5}) 5 x 5 = x 5 = () Pr{X = x} x 5 =. V = {,,, } E (). (V, E) 6 7, ( x i ) = (i {,, ( 5, 9, ) }), x i = ( (i {3, ), 8,, }) 6 7 x 6 =,,, Pr{X = x} x 7 x 6 =., (), 6, 7 x 7.., V V = {,,, }, E () 6 7,! x i = (i {,!,! 5, 9, }),! x i! = (i {3,, 8,, }) 6 7 x 6 =,,, Pr{X = x} x 7!! x 6 =. x 7., Pr { X = x } x., x = x = = x V,., x = x = = x V x., E {i, j} x i = x j {i, j} (x i x j {i, j} ) x. () Pr { X = x } (Markov Chain Monte Carlo: MCMC) ),5), x = (x, x, x V ) T 5. 5 () Pr X = x x = (x, x, x V ) T. 5 α. 3 c 9 Information Processing Society of Japan
4 , x i x j {i, j} K(x) (x i x j) = ( δ xi,x j ) (6) {i,j} E {i,j} E. x K(x) Pr { X = x }. K(x) % x A = {x K(x)/ E.} Pr{A} Pr { X = x } Ā {x K(x)/ E >.} Pr{Ā} {x K(x)/ E.} {x K(x)/ E >.}. α Pr { X = x } Pr{A} > Pr{Ā} (7),,, α, Pr{A} < Pr{Ā} (8). A Pr{X = x}, A, Pr{A}. α x i = x j ({i, j} E) x, x i = x j({i, j} E) x. 5 α x. (7) (8) α.. 5 α = α α.... Cov[X i, X j ] (x i µ i )(x j µ j )Pr{X = x} ( {i, j} E) (9) x =x = x V =. µ i X i. µ i x =x = x V = x i Pr{X = x} () V + (9) Cov[X i, X j] α 6, α = α = 6 V + (9) Cov[X i, X j ].. 5 α =, ( 7 ).. x 8. Q = 56 () 3. 3 V \{5} 5. 9/6/ Pr{X 5 = x 5 X =, X =, X 3 =, X =, X 6 =, X 7 =, X 8 =, X 9 = } Pr{X =, X =, X3 =, X =, X5 = x5, X6 =, X7 =, X8 =, X9 = } = Pr{X =, X =, X 3 =, X =, X 6 =, X 7 =, X 8 =, X 9 = } () c 9 Information Processing Society of Japan
5 9/6/ 情報処理学会研究報告 図 7 通常の自然画像を 値化した画像と図 5 の α = のときの生成画像の類似性. X x X x x X X3 x3 X3 x3 X x X x XV = X5, XV \{5} =, xv = x5, xv \{5} = X6 x6 X6 x6 X7 x7 X x 7 7 X8 x8 X8 x8 X X9 X9 x x9 (3) x9 という記号を導入する. この記号をつかうと式 ()-() は画素 5 以外の画素の輝度値が xi ( i V \{5}) であるときの画素 5 の輝度値に対する確率は次のように与えられる. Pr{X5 = x5 XV \{5} = xv \{5} } = Pr{XV \{5} = xv \{5} } = 図 8 式 () の確率分布におけるマルコフ連鎖モンテカルロ (Markov Chain Monte Carlo) 法による生成画像 x. X x5 = Pr{XV = xv } 式 ()-(5) に式 () を代入すると次の式が得られる. Y Pr{X5 = x5 XV \{5} = xv \{5} } exp α(x5 xj ) Pr{X =, X =, X3 =, X =, X6 =, X7 =, X8 =, X9 = } = X Pr{XV = xv } Pr{XV \{5} = xv \{5} } Pr{X =, X =, X3 =, X =, X5 = x5, X6 =, X7 =, X8 =, X9 = } () (5) (6) j 5 x5 = () 5 {,, 6, 8} (7) Pr{X5 = x5 XV \{5} = xv \{5} } = Pr{X5 = x5 Xk = xk, k 5} (8) 5 は画素 5 のすべての最近接画素の集合をあらわしている. 式 (6) 式が長いので が成り立つことを示している. 同様にして, 図 の例で V \{6, 7} の画素の状態が固定されている場合に 5 c 9 Information Processing Society of Japan
6 X V = X X X 3 X X 5 X 6 X 7 X 8 X 9 X X X, X V \{6,7} = X X X 3 X X 5 X 8 X 9 X X X, x V = x x x 3 x x 5 x 6 x 7 x 8 x 9 x x x, x V \{6,7} = x x x 3 x x 5 x 8 x 9 x x x (9), 6 7. Pr{X 6 = x 6, X 7 = x 7 X V \{6,7} = x V \{6,7} } = Pr{X V \{6,7} = x V \{6,7} } = x 6 =x 7 = ()-() (). Pr{X 6 = x 6, X 7 = x 7 X V \{6,7} = x V \{6,7} } ( exp ( α(x 6 x k ) )) k 6\{7} exp ( α(x 6 x 7 ) )( Pr{X V = x V } Pr{X V \{6,7} = x V \{6,7} } () Pr{X V = x V } () k 7\{6} exp ( α(x 7 x k ) )) () {6} {, 5, 7, }, {7} {3, 6, 8, } (3) Pr{X 6 = x 6, X 7 = x 7 X V \{6,7} = x V \{6,7} }. = Pr{X 6 = x 6, X 7 = x 7 X k = x k, k {6, 7}} () () (),. X V (Markov Random Field: MRF),. Pr{X i = x i X V \{i} = x V \{i} } = Pr{X i = x i X k = x k, k {i}} ( i V ) (5) i i., () () (V, E). Pr{X i = x i X V \{i} = x V \{i} } exp ( α(xi x k) ) (6) k i Pr{X i = x i, X j = x j X V \{i,j} = x V \{i,j} } ( exp ( α(x i x k ) )) k i\{j} exp ( α(xi xj))( 3. k j\{i} exp ( α(xj x k) )) (7) (),.. x. (Additive White Gaussian Noise). n i (i V ) n = (n, n,, n V ) y = (y, y,, y V ). y = x + n (8) y = (y, y,, y V ) Y = (Y, Y,, Y V ) ( 9 ). Pr{Y = y X = x} exp ( σ (y i x i ) ) (9) i V 9/6/ Pr{Y = y X = x} x y, y x Pr{X = x Y = y}. () (9) (Bayes 6 c 9 Information Processing Society of Japan
7 / -. / : 3>; 33 3 : 3<; 3=3 3 9/6/ #"! 9 "!#!#!$ % & %'& ()*+*!#!#!,+ % & %'& (9). %$'&, '&#()(*(+& -,- $. /&&#()()(+&, -,- (3). Pr{X = x Y = y},. X i ( ), E[X i] = Q Q x =x = Q x V = x ipr{x = x Y = y} (3) Formula). Pr{X = x Y = y} = ( i V (9) y. Pr{Y = y X = x}pr{x = x} Pr{Y = y} exp ( σ (y i x i ) ))( {i,j} E (3) Pr{X = x Y exp ( α(x i x j ) )) (3) = y} (Posterior Probability)., Pr{X = x} (Prior Probability). () Pr{X = x} (3) Pr{X = x Y 9. = y}. O(exp( V )). ( ) (Belief Propagation). {i, j} M i j (x j ) M j i (x i ) (Message). (3) (Message Propagation Rule) ( ). Q M j i (x i ) Constant exp ( α(x i z) σ (z y j) ) z= M k j (z) ( {i, j} E) (3) k j \{i} 7 c 9 Information Processing Society of Japan
8 Q M i j(x j) Constant exp ( α(xj z) (z yi)) σ z= M k j (z) ( {i, j} E) (33) k i \{i} j j, j \{i} j i. (3)-(33),, k j \{i} O()., O( V ). {M i j (x), M j i (x) {i, j} E}, ). 98,, (Low Density Parity Check: LDPC), (Code Division Multiple Access: CDMA), (Satisfiability: SAT). 3),6) 8). 3),6),9). (Sample Average)., () x, x (9) y., y Pr{ X Y = y} x x = x(y) x x d(x, x) = (xi xi) V i V,.,.,,., Q Q Q ( d ( x, x(y) ) x =x = x V = Pr{Y = y X = x}dy dy dy V )Pr{X = x} (3),. (3) (Spin Glass Theory), (Configuration Average).,,,, CDMA, 3),) ). 9/6/ 8 c 9 Information Processing Society of Japan
9 5.. (),,. 5). ),). (No.879, No.8798) COE. ) K. Tanaka: Statistical-Mechanical Approach to Image Processing (Topical Review), Journal of Physics A: Mathematical and General, Vol.35, No.37, pp.r8- R5,. ) :,, 6. 3) ( ): SGC,, 6. ) :, (3). 5), : II,, 5. 6),,,, : I,, 3. 7) C. M. Bishop Pattern Recognition and Machine Learning, Springer, 6. 8) M. J. Wainwright and M. I. Jordan: Graphical Models, Exponential Families, and Variational Inference, now Publishing Inc, 8. 9) M. Opper and D. Saad (eds): Advanced Mean Field Methods Theory and Practice, MIT Press,. ) :,, 999. ) H. Nishimori: Statistical Physics of Spin Glasses and Information Processing, An Introduction, Oxford University Press,. ) : /,,. 3) Y. Kabashima and D. Saad: Statistial Mechanics of Low-Density Parity-Check Codes (Topical Review), Journal of Physics A: Mathematical and General, Vol. 37, No.6, pp.r-r3,. ) M. Mézard and A. Montanari: Information, Physics, and Computation, Oxford University Press, 9. 5) A. S. Willsky: Multiresolution Markov models for signal and image processing, Proceedings of IEEE, vol.9, no.8, pp ,. ( 5 9 ) ( ) ,,,, IEEE-CIS. 9/6/ 9 c 9 Information Processing Society of Japan
main.dvi
1 10,.,,.,,,.,,, 2. 1,, [1].,,,.,,.,,,.. 100,,., [2]. [3,4,5]. [6,7,8,9,10,11]. [12, 13, 14]. 1 E-mail: [email protected] CDMA [15, 16].. 1970, 1980 90, 1990 30,,. [17, 18]. [19, 20, 21]. [17,
ばらつき抑制のための確率最適制御
( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y
Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :
Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 : Dirichlet process mixture Dirichlet process
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
Microsoft PowerPoint - SSII_harada pptx
The state of the world The gathered data The processed data w d r I( W; D) I( W; R) The data processing theorem states that data processing can only destroy information. David J.C. MacKay. Information
25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52
26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................
23_02.dvi
Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested
(MIRU2008) HOG Histograms of Oriented Gradients (HOG)
(MIRU2008) 2008 7 HOG - - E-mail: [email protected], {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human
カルマンフィルターによるベータ推定( )
β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L
1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I
(missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es
1 1 1 1 1 5 1 2 1 A Consideration of Features for Fatigue Estimation by Gait Analysis Using Accelerometer Hidekazu Higashi, 1 Tadashi Shigeoka, 1 Tsuyoshi Itokawa, 1 Teruaki Kitasuka 1 and Masayoshi Aritsugi
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
28 Horizontal angle correction using straight line detection in an equirectangular image
28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,
[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:
turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch
1 -- 2 6 LDPC 2012 3 1993 1960 30 LDPC 2 LDPC LDPC LDPC 6-1 LDPC 6-2 6-3 c 2013 1/(13) 1 -- 2 -- 6 6--1 2012 3 turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) 6 1 2 1 1 interleaver 2 2 2 parallel concatenated
1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf
1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi
,,.,.,,.,.,.,.,,.,..,,,, i
22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of
/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/
2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica
Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L
Vol. 48 No. 4 Apr. 2007 LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for Learning to Associate LAN Construction Skills with TCP/IP
sakigake1.dvi
(Zin ARAI) [email protected] http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (
Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x =
DOG(Difference of two Gaussians 8 A feedback model for the brightness illusion Shoji Nodasaka and Asaki Saito We consider mechanism of the Hermann grid. The mechanism is usually explained by effects of
12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71
2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12
1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
Fig. 1 Relative delay coding.
An Architecture of Small-scaled Neuro-hardware Using Probabilistically-coded Pulse Neurons Takeshi Kawashima, Non-member (DENSO CORPORATION), Akio Ishiguro, Member (Nagoya University), Shigeru Okuma, Member
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
Microsoft Word doc
. 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
解説 査読の虎の巻 山里敬也通信ソサイエティ副編集長 Takaya Yamazato 佐波孝彦通信ソサイエティ和文論文誌編集副委員長 Takahiko Saba 塩田茂雄通信ソサイエティ英文論文誌編集副委員長 Shigeo Shiota 太田能 IEICE Communications Expres
解説 査読の虎の巻 山里敬也通信ソサイエティ副編集長 Takaya Yamazato 佐波孝彦通信ソサイエティ和文論文誌編集副委員長 Takahiko Saba 塩田茂雄通信ソサイエティ英文論文誌編集副委員長 Shigeo Shiota 太田能 IEICE Communications Express 編集副委員長 Chikara Ota 1. モナリザの瞳と LDPC 1 LV 50 1963 Gallager
φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)
φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x
2 / 5 Auction: Theory and Practice 3 / 5 (WTO) 1 SDR 27 1,6 Auction: Theory and Practice 4 / 5 2
[email protected] June 22, 212 2................................................................ 3...................................................... 4............................................................
(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +
3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows
The 15th Game Programming Workshop 2010 Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard Magic Bitboard Magic Bitbo
Magic Bitboard Magic Bitboard Bitboard Magic Bitboard Bitboard Magic Bitboard 64 81 Magic Bitboard Magic Bitboard Bonanza Proposal and Implementation of Magic Bitboards in Shogi Issei Yamamoto, Shogo Takeuchi,
わが国企業による資金調達方法の選択問題
* [email protected] ** [email protected] *** [email protected] No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * [email protected] ** [email protected]
waseda2010a-jukaiki1-main.dvi
November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3
2 22006 2 e-learning e e 2003 1 4 e e e-learning 2 Web e-leaning 2004 2005 2006 e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware
2 2 Journal of Multimedia Aided Education Research 2006, Vol. 2, No. 2, 19 e 1 1 2 2 1 1 GP e 2004 e-learning 2004 e-learning 2005 e-learning e-learning e-learning e-learning 2004 e-learning HuWeb 2005
Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1
Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization
(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc
1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since
空力騒音シミュレータの開発
41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
dvi
2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30
