14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display

Similar documents
21 Effects of background stimuli by changing speed color matching color stimulus

ron.dvi

2 1 ( ) 2 ( ) i

NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

24 Depth scaling of binocular stereopsis by observer s own movements

untitled

i

2

29 Short-time prediction of time series data for binary option trade

25 Removal of the fricative sounds that occur in the electronic stethoscope

(Visual Secret Sharing Scheme) VSSS VSSS 3 i

25 D Effects of viewpoints of head mounted wearable 3D display on human task performance

三税協力の実質化 : 住民税の所得税閲覧に関する国税連携の効果

soturon.dvi

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

SC-85X2取説


Web Web Web Web Web, i



先端社会研究 ★5★号/4.山崎

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN i

23 A Comparison of Flick and Ring Document Scrolling in Touch-based Mobile Phones

日本感性工学会論文誌

II

これわかWord2010_第1部_ indd

パワポカバー入稿用.indd

これでわかるAccess2010

21 e-learning Development of Real-time Learner Detection System for e-learning

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

24 Perceived depth position of autostereoscopic stimulus

17 The Analysis of Hand-Writing datas for pen-input character boxes


平成18年版 男女共同参画白書

III


17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

塗装深み感の要因解析

10-渡部芳栄.indd

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

橡

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

ii



NGO HIV HIV 8, ,378 1,078 1,331 2,409 9,749 2,038 11,787 2, , ,118 2,344 1,352 3, , ,

Sir Isaac Newton (1730) Rays are not colored. 2011年 9月 26日 月曜日

0801391,繊維学会ファイバ12月号/報文-01-西川

27 VR Effects of the position of viewpoint on self body in VR environment

29 jjencode JavaScript

エクセルカバー入稿用.indd

25 AR 3 Property of three-dimensional perception in the wearable AR environment

i


Wide Scanner TWAIN Source ユーザーズガイド

01_.g.r..

untitled

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

II

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i


四校_目次~巻頭言.indd

untitled



1 1 tf-idf tf-idf i




01-加藤 実-5.02

28 Horizontal angle correction using straight line detection in an equirectangular image




活用ガイド (ソフトウェア編)

<8FEE95F18CA48B865F35308D862E696E6462>

untitled

困ったときのQ&A

SketchPoint Pie-Menu On/Off 3 Pie-Menu 8 6 On/Off SketchPoint i


入門ガイド

kut-paper-template.dvi

,,.,.,,.,.,.,.,,.,..,,,, i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

ii

8 The Bulletin of Meiji University of Integrative Medicine API II 61 ASO X 11 7 X-4 6 X m 5 X-2 4 X 3 9 X 11 7 API 0.84 ASO X 1 1 MR-angio

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

42_49森保.indd

PC PDA SMTP/POP3 1 POP3 SMTP MUA MUA MUA i


九州大学学術情報リポジトリ Kyushu University Institutional Repository 看護師の勤務体制による睡眠実態についての調査 岩下, 智香九州大学医学部保健学科看護学専攻 出版情報 : 九州大学医学部保健学


活用ガイド (ソフトウェア編)

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

i

Kyushu Communication Studies 第2号

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

Transcription:

14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display 1030281 2003 2 12

CRT [1] CRT. CRT von Kries PC CRT CRT 9300K CRT 6500K CRT CRT 9300K x y S L-2M x y von Kries S L-2M [2] { i {

von Kries { ii {

Abstract Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display Saori TANIGUCHI In a previous research[1], color constancy was veried when picture of on two CRT displays with two dierent color temperatures as the presentation methods were compared. As the result, there were color constancy only with dierence of color temperature of CRT, and the result was able to explain by von Kries type cone adaptation model. However, it is not clear whether the eect of cone adaptation contribute to color constancy on stimulus conditions without lighting space. Then, the experiment was conducted for a purpose that investigate how the strength of color constancy changed on the experiment conditions considered that cone adaptation levels dier. Two CRT displays connected to one set of PC in a darkroom. Left CRT was set as 9300K and right CRTwas set as 6500K (standard), and the same picture was displayed. Arbitrary standard colors are made from articial operation on color matching paper in a picture. Until color matching paper of left CRT thinks that it became paper similarly to color matching paper of right CRT(standard color), the color of left color matching paper(on 9300K) adjusted by hue, saturation, and brightness. The constant color constancy was seen, when I plotted results of three subjects on the x,y chromaticity coordinates and considered. Then I calculated the amount of cone responses on the basis of S,L-2M cone, and replotted. The results were the same as the rst plotting data. Still more, the results were able to explain by von Kries type cone { iii {

adaptation model that showed cone adaptation. But, I became clear that strength of color constancy disagree with cone adaptation levels when calculated by S,L-2M cone and considered. key words color constancy, cone adaptaion, von Kries { iv {

1 1 1.1...................................... 1 1.2................................ 2 1.3.............................. 3 1.4................................ 4 1.4.1................................ 4 1.4.2............................ 6 1.5................................... 6 1.5.1 [1].............................. 6 1.5.2............................. 7 2 8 2.1................................... 8 2.2................................... 9 2.3.................................... 10 2.4...................................... 10 2.5................................... 11 3 13 3.1.......................... 14 3.2 Haploscopic...................... 15 3.3................ 16 4 17 4.1.................................... 17 { v {

4.1.1............................. 17 4.1.2...................... 19 4.1.3 Haploscopic................... 20 4.1.4............. 21 4.1.5............................ 21 4.2 - von Kries.......................... 23 4.3 S.............................. 25 4.3.1...................... 25 4.3.2 Haploscopic................... 26 4.3.3............. 27 4.3.4........................... 28 4.4 L-2M........................... 29 4.4.1...................... 29 4.4.2 Haploscopic..................... 30 4.4.3............. 31 4.4.4........................... 32 4.5................................ 33 4.5.1......................... 33 4.5.2. 33 L M S............................. 33 S........................... 33 L-2M......................... 34.................... 34 5 36 37 { vi {

38 A 39 A.1.................................. 39 A.2 D-15.............................. 39 { vii {

1.1................................ 2 1.2................................. 3 1.3............................ 5 2.1................................ 9 2.2.................................... 11 3.1 S.T( ) C.M( ) K.H( )............... 14 3.2 S.T( ) C.M( ) K.H( )............... 15 3.3 S.T( ) C.M( ) K.H( )............... 16 4.1 S.T( ) C.M( ) K.H( )............... 19 4.2 S.T( ) C.M( ) K.H( )............... 20 4.3 S.T( ) C.M( ) K.H( )............... 21 4.4 S.T( ) C.M( ) K.H( ).......... 25 4.5 S.T( ) C.M( ) K.H( ).......... 26 4.6 S.T( ) C.M( ) K.H( )......... 27 4.7 ( ) ( ) ( )................ 28 4.8 S.T( ) C.M( ) K.H( )......... 29 4.9 S.T( ) C.M( ) K.H( )......... 30 4.10 S.T( ) C.M( ) K.H( )......... 31 4.11 ( ) ( ) ( )................ 32 { viii {

1 1.1 [1] CRT CRT 9300K ( ) 6500K { 1 {

1.2 1.2 L- M- S- 1.1 (L- M- ) r-g (L- M- ) y-b (L- M- S- ) 1.1 Visual cortex (V1) Chromatic channel Achromatic channel y/b r/g Lu + - + - + + + S cone M cone L cone 1.1 V1 { 2 {

1.3 1.3 1.2 1.2 19 von Helmholtz { 3 {

1.4 1.4 ( 28 5 1999) 1.4.1 ( ) CIE( ) (C D ) D 65 ( 6500K) { 4 {

1.4 / / / / Arend ( ) CRT CRT 1.3 { 5 {

1.5 1.4.2 Arend Reeves CRT 6500K ( ) 4000K 10000K ( ) apparent Match paper match apparent match paper match Brunswik ratio constancy index u 0 v 0 [3] 1.5 1.5.1 [1] { 6 {

1.5 CRT Haploscopic CRT RGB (K Red, K Green, K Blue ) RGB (Paper Match) von Kries Matching 1.5.2 9300K CRT 6500K CRT paper Match { 7 {

2 2.1 [1] CRT von Kries [3] 3 ( ) CRT Haploscopic 2 CRT CRT CRT { 8 {

2.2 CRT 10 1 1 2.2 180cm 240cm 180cm( ) PC CRT 2 2.1 2 CRT 240cm Observer 60cm CRT Experimenter PC 180cm 2.1 60cm CRT { 9 {

2.3 3 2.3 3 S.T C.M K.H 22 22 22 C.M K.H A 2.4 334 XV-3 (CASIO) 14 2.2 Adobe Illustrator PC 2 CRT CRT RD17GX ( ) RD17V( ) 2 CRT 6500K 9300K { 10 {

2.5 2.2 2 CRT CS- 1000(MINOLTA) 6500K CRT (x,y) = (0.315, 0.328) ( 176cd/m 2 ) 9300K CRT (x,y) = (0.237, 0.295) ( 173cd/m 2 ) F77 (SURUGA SEIKI) PC 2.5 2 CRT 6500K CRT Illustrator 70 90 10 330 20 18 0 18 { 11 {

2.5 paper match 9300K CRT (paper match) CRT HSB( - - ) 1 3 3 { 12 {

3 Lv( ) x x, y, L X Y Z 8 >< >: X 1 = x 1 2x + L 1 y 1 L 1 Y 1 = y 1 y 1 Z 1 =(1; x 1 ; y 1 0 1 0 1 B @ x 1 y 1 L 1 x 2 y 2 L 2 C A! B @ X 1 Y 1 Z 1 X 2 Y 2 Z 2 C A x 3 y 3 L 3 X 3 Y 3 Z 3 X Y Z 8 >< >: X AV E = X 1 + X 2 + X 3 3 Y AV E = L 1 + L 2 + L 3 3 Z AV E = Z 1 + Z 2 + Z 3 3 X AV E Y AV E Z AV E AV E AV E L AV E 8 X AV E AV E = >< X AV E + Y AV E + Z AV E Y AV E AV E = X AV E + Y AV E + Z AV E >: L AV E = Y AV E { 13 {

3.1 3.1 3.1. 3.1 S.T( ) C.M( ) K.H( ) 6500K 9300K { 14 {

3.2 Haploscopic 3.2 Haploscopic Haploscopic 3.2. 3.2 S.T( ) C.M( ) K.H( ) CRT 6500K CRT 9300K 6300K CRT 9300K CRT Haploscopic CRT CRT CRT { 15 {

3.3 3.3 3.3. 3.3 S.T( ) C.M( ) K.H( ) 3.1 3.2 { 16 {

4 4.1 18 L( ) x (6500K 9500K ) L,M,S L-2M S x 4.1.1 [4] L M S (l() m() s()) R G B (l R l G l B m R m G m B s R s G s B ) (r() g() b()) (4.1) 0 B @ l() m() s() 1 0 C A = B @ l R l G l B m R m G m B s R s G s B 1 0 C B A @ r() g() b() 1 C A (4.1) (4.2) 0 1 0 1 0 1 l() 0:15514 0:54312 ;0:03286 r() B @ m() C A = B @ ;0:15514 0:45684 0:03286 C B A @ g() C A s() 0 0 1 b() (4.2) { 17 {

4.1 (4.1) (4.2) L M S 0 B @ X = x y Y Y = Y Z = 1 ; x ; y Y y 1 C A (4.3) 8 >< >: L = 1 b + d (a x y + b ; c 1 ; x ; y )Y y M = 1 b + d (;a x y + d ; c 1 ; x ; y y S = 1 ; x ; y Y y )Y 8 >< >: a =0:15514 b =0:54312 c =0:03286 d =0:45684 (4.4) S L-2M { 18 {

4.1 4.1.2 S, L-2M 4.1 4.1 S.T( ) C.M( ) K.H( ) 6500K CRT 9300K CRT RGB { 19 {

4.1 4.1.3 Haploscopic Haploscopic S, L-2M 4.2 4.2 S.T( ) C.M( ) K.H( ) 6500K CRT 9300K CRT RGB { 20 {

4.1 4.1.4 S, L-2M 4.3 4.3 S.T( ) C.M( ) K.H( ) 6500K CRT 9300K CRT RGB 4.1.5 S vs L-2M x 9300K CRT { 21 {

4.1 4.2 4.3 4.1 { 22 {

4.2 - von Kries 4.2 - von Kries von Kries (4.5) Ri 0 = k i R i (4.5) K i =1=R illum i i = L M S (4.6) (R illum i i (i = L M S) ) von Kries (4.6) (4.7) R 0 i 6500 = R i 6500=R illum i6500 (4.7) R 0 i 9300Matching = R i 9300Matching=R illum i9300 (4.8) Matching R 0 i 6500 = R0 i 9300Matching R i 9300Matching=R i 6500 = R illum i9300 = C 6500K S 1 (L ; 2M) 1 Paper Matching S 3 (L ; 2M) 3 (4.9) (4.10) S 3 =S 1 = C S (4.9) (L ; 2M) 3 =(L ; 2M) 1 = C (L;2M ) (4.10) { 23 {

4.2 - von Kries (4.11) (4.12) S 3 = C S S 1 + C S2 (4.11) (L ; 2M) 3 = C (L;2M ) (L ; 2M) 1 + C (L;2M )2 (4.12) C S2 C (L;2M )2 S 1 S 3, (L;2M) 1 (L;2M) 3 (4.11) (4.12) { 24 {

4.3 S 4.3 S 4.3.1 S 4.4 4.4 S.T( ) C.M( ) K.H( ) S.T S 3 =1:06 S 1 ; 0:02 C.M S 3 =1:16 S 1 ; 0:02 K.H S 3 =1:06 S 1 ; 0:02 { 25 {

4.3 S 4.3.2 Haploscopic Haploscopic S 4.5 4.5 S.T( ) C.M( ) K.H( ) S.T S 3 =1:18 S 1 ; 0:06 C.M S 3 =1:24 S 1 ; 0:04 K.H S 3 =1:44 S 1 ; 0:24 { 26 {

4.3 S 4.3.3 S 4.6 4.6 S.T( ) C.M( ) K.H( ) S.T S 3 =1:13 S 1 ; 0:03 C.M S 3 =1:30 S 1 ; 0:08 K.H S 3 =1:20 S 1 ; 0:04 { 27 {

4.3 S 4.3.4 RGB 6500K 4.7 4.7 ( ) ( ) ( ) { 28 {

4.4 L-2M 4.4 L-2M 4.4.1 L-2M 4.8 4.8 S.T( ) C.M( ) K.H( ) S.T (L ; 2M) 3 =0:95 (L ; 2M) 1 ; C.M (L ; 2M) 3 =0:95 (L =2M) 1 ; K.H (L ; 2M) 3 =0:96 (L ; 2M) 1 ; 0:01 0:02 0:01 { 29 {

4.4 L-2M 4.4.2 Haploscopic Haploscopic L-2M 4.9 4.9 S.T( ) C.M( ) K.H( ) S.T (L ; 2M) 3 =0:99 (L ; 2M) 1 ; C.M (L ; 2M) 3 =0:98 (L =2M) 1 ; K.H (L ; 2M) 3 =1:13 (L ; 2M) 1 ; 0:01 0:02 0:02 { 30 {

4.4 L-2M 4.4.3 L-2M 4.10 4.10 S.T( ) C.M( ) K.H( ) S.T (L ; 2M) 3 =0:99 (L ; 2M) 1 ; C.M (L ; 2M) 3 =1:03 (L =2M) 1 ; K.H (L ; 2M) 3 =0:99 (L ; 2M) 1 ; 0:02 0:02 0:02 { 31 {

4.4 L-2M 4.4.4 RGB 6500K 4.11 4.11 ( ) ( ) ( ) { 32 {

4.5 4.5 4.5.1 RGB 6500K 9300K, ( ) S L-2M ( ) 4.5.2 L M S L, M, S ( ) L, M, S long-, middle-, short- L ( ) S ( ) M L S S { 33 {

4.5 ( ) ( ) Haploscopic ( ) 9300 L-2M L-2M 9300K Haploscopic Haploscopic ( ) ( ( )) 9300K Haploscopic. Haploscopic S Haploscopic { 34 {

4.5 L-2M) Haploscopic von Kries S L-2M { 35 {

5 Haploscopic Haploscopic von Kries von Kreis { 36 {

{ 37 {

[1] CRT [VISION],Vol.14,No.1,pp.44,2002 [2] (1999)pp.232 241 [3] [4] { 38 {

A A.1 Plate D-15 100% A.2 D-15 1 (reference cap) 15 1 15 D-15 { 39 {

A.2 D-15 { 40 {