TOP URL 1

Similar documents
TOP URL 1

TOP URL 1

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

( ) (ver )

SO(2)

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

all.dvi

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

all.dvi

0406_total.pdf

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

: , 2.0, 3.0, 2.0, (%) ( 2.

,,..,. 1

量子力学A

『共形場理論』

LLG-R8.Nisus.pdf

量子力学 問題


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Gmech08.dvi

all.dvi

基礎数学I

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

arxiv: v1(astro-ph.co)

QMII_10.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

本文/目次(裏白)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

chap9.dvi

Part () () Γ Part ,

Note.tex 2008/09/19( )

untitled

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Xray.dvi


φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

2 Planck Planck BRST Planck Λ QG Planck GeV Planck Λ QG Friedmann CMB

all.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


第10章 アイソパラメトリック要素


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

gr09.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

A


6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

meiji_resume_1.PDF

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

転位の応力場について

untitled

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

chap10.dvi

untitled

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

第3章

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

keisoku01.dvi

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

BGK

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Transcription:

TOP URL http://amonphys.web.fc2.com/ 1

30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6............................... 9 30.7..................... 10 30.8...................... 11 2

30 ( ) 30.1 : S g = 1 d 4 x R 16πG G R g µν = det g R 2 S g = 1 d 4 x B, B = Γ ρ ρµγ µσ σ Γ λ µνγ µν λ 16πG ( ) Γ λµν = 1 2 ( λg µν + ν g λµ + µ g νλ ) g µν η µν = diag(1, 1, 1, 1) µν h µν : g µν = η µν + h µν. g µν h µν 2 h µν 3

B B = 1 4 λh µν λ h µν 1 4 µh µ h + 1 2 µh ν h µν 1 2 µh λ ν λ h µν h = h µ µ f µν = h µν 1 2 η µνh f µν f = f µ µ = h B h µν = f µν 1 2 η µνf B = 1 4 λf µν λ f µν 1 8 µf µ f 1 2 µf λ ν λ f µν = 1 + ( 1 ) S g = 1 16πG d 4 x ( 1 4 λf µν λ f µν 1 8 µf µ f 1 2 µf λ ν λ f µν 1 S g = d 4 x (2η µρ η νσ η µν η ρσ ) η αβ α f µν β f ρσ 128πG 1 d 4 x η ρσ µ f µρ ν f νσ + S I 32πG S I f µν 3 ) 30.2 µ f µν = 0 S f = 1 d 4 x η ρσ µ f µρ ν f νσ 32πG 4

S c : S g = S g + S f + S c 1 = d 4 x (2η µρ η νσ η µν η ρσ ) η αβ α f µν β f ρσ + S I + S c. 128πG S g S g = i d 4 xd 4 y f µν (x)k µν,ρσ (x, y)f ρσ (y) + S I + S c, 2 K µν,ρσ (x, y) = i 64πG (η µρη νσ + η µσ η νρ η µν η ρσ ) x δ 4 (x y) K µν,ρσ (x, y) ( ) µν,ρσ (x, y) d 4 y K µν,ρσ (x, y) ρσ,αβ (y, z) = δµν αβ δ 4 (x z), δµν ρσ = 1 ( δ ρ 2 µ δν σ + δµδν) σ ρ δµν ρσ : A µν = A νµ δ ρσ µνa ρσ = A µν, δµν ρσ = δµν σρ = δνµ ρσ = δ ρσ µν iɛ µν,ρσ (x, y) = 16πG ( η µρ η νσ +η µσ η νρ η µν η ρσ) d 4 k i e ik (x y) (2π) 4 k 2 + iɛ 30.3 φ(x) m S φ = d 4 x ( ) 1 2 gµν µ φ ν φ m2 2 φ2 5

ɛ µνρσ 4 det g = ɛ µνρσ (η µ0 + h µ0 )(η ν1 + h ν1 )(η ρ2 + h ρ2 )(η σ3 + h σ3 ) = 1 h 00 + h 11 + h 22 + h 33 + ( 2 ) = 1 h + ( 2 ) = det g = 1 + 1 2 h + ( 2 ) g µν = η µν h µν + ( 2 ) ( ) 1 S φ = d 4 x 2 ηµν µ φ ν φ m2 2 φ2 + S gφ, S gφ = d 4 x ( 12 hµν µ φ ν φ + 14 ) ηµν h µ φ ν φ m2 4 hφ2 + (4 ) f µν ( S gφ = d 4 x f µν 1 ) 2 µφ ν φ + m2 4 η µνφ 2 + (4 ) 30.4 m 1, m 2 30.1 30.1: 6

S gφ M = 2 2 16πG (η µρ η νσ +η µσ η νρ η µν η ρσ i ) (p 1 p 3 ) 2 ( i 1 ) ( 2 p 1µp 3ν + m2 1 4 η µν i 1 ) 2 p 2ρp 4σ + m2 2 4 η ρσ = i16πg ( p1 p (p 1 p 3 ) 2 2 p 3 p 4 + p 1 p 4 p 2 p 3 p 1 p 3 p 2 p 4 ) + m 2 2 p 1 p 3 + m 2 1 p 2 p 4 2m 2 1m 2 2 2 2 p µ 1 = (E 1, p) µ, p µ 2 = (E 2, p) µ, p µ 3 = (E 1, p ) µ, p µ 4 = (E 2, p ) µ, E i = θ M = p 2 + m 2 i i4πg ( m 2 p 2 sin 2 (θ/2) 1 m 2 2 + 2(m 2 1+m 2 2) p 2 + 4(E 1 E 2 + p 2 ) p 2 cos 2 (θ/2) ) dσ dω = 1 64π 2 (E 1 +E 2 ) 2 M 2 = G2( m 2 1m 2 2 + 2(m 2 1+m 2 2) p 2 + 4(E 1 E 2 + p 2 ) p 2 cos 2 (θ/2) ) 2 4(E 1 +E 2 ) 2 p 4 sin 4 (θ/2) p m i dσ dω = G2 m 2 1m 2 2m 2 4 p 4 sin 4 (θ/2), m = m 1m 2 m 1 +m 2 0 : q 2 1q 2 2m 2 64π 2 p 4 sin 4 (θ/2) q 1 q 2 /(4π) Gm 1 m 2 ( ) 2 7

p m i dσ dω = 4G2 p 2 tan 4 (θ/2) G 2 30.5 X i (i = 0, 1, 2, 3) i b i µ = Xi x µ (vierbein) 4 (vielbein) : dτ 2 = g µν dx µ dx ν = η ij dx i dx j g µν = η ij b i µb j ν b i µ(x ) = X i X j x ν x µ bj ν(x) A i (x) Ã µ = b i µa i 8

η ij, η ij g µν, g µν 30.6 Φ = Φ(x) δφ = Φ Φ = 1 2 ɛ ijs ij Φ ( ɛ ji = ɛ ij, S ji = S ij ) ɛ ij S ij S ij = 0, S ij = γ ij, S ij = M ij. γ ij = 1 4 [ γi, γ j ], (M ij ) kl = η ik δ j l ηjk δ i l, γ i ( ) µ Φ δ µ Φ = µ δφ = 1 2 ɛ ijs ij µ Φ + 1 2 ( µɛ ij )S ij Φ µ ɛ ij : D µ Φ = µ Φ + 1 2 ω ijµs ij Φ, ω jiµ = ω ijµ. ω ijµ D µ Φ Φ : δd µ Φ = 1 2 ɛ ijs ij D µ Φ. : D µ φ = µ φ ( φ ), D µ ψ = µ ψ + 1 2 ω ijµγ ij ψ ( ψ ), D µ A i = µ A i + ω i jµa j D µ A i = µ A i ω j iµa j D µ η ij = D µ η ij = D µ δ i j = 0. ( A i ), ( A i ), 9

: D µ g ρσ = D µ (b i ρb iσ ) = 0 D µ b i ν = 0 D µ b i ν = µ b i ν + ω i jµb j ν Γ λ νµb i λ ω ijλ = b i µ b j ν Γ µνλ b j µ λ b iµ i, j : λ g µν = Γ µνλ + Γ νµλ ( ) SO(3, 1) ( 1956) ω ijµ A a µ (ij) a S ij igt a 30.7 ψ(x) : S ψ = d 4 x ( ) i 2 b i µ ψγ i D µ ψ + c.c. m ψψ. c.c. m D µ = µ + (1/2) ω ijµ γ ij b i µ = δ µ i 1 2 hµ i + (2 ), ω ijµ = 1 2 ( ih jµ + j h iµ ) + (2 ) S ψ = d 4 x ( i ψγ µ µ ψ m ψψ ) + S gψ, S gψ = + ( i d 4 x h 4 ψ λ λ ψ i 4 ψγ λ λ ψ m ) 2 ψψ d 4 x h ( µν i 4 ψγ ν µ ψ + i ) 4 ψγ µ ν ψ + (4 ) 10

{γ µ, γ νλ } + {γ ν, γ µλ } = 0 f µν S gψ = d 4 x f ( µν i 4 ψγ ν µ ψ + i 4 ψγ µ ν ψ i 8 η ψγ µν λ λ ψ + i 8 η µν λ ψγ λ ψ + m 2 η ψψ ) µν + (4 ) 30.8 m 1, m 2 30.2 30.2: M = 16πG (η µρ η νσ +η µσ η νρ η µν η ρσ i ) (p 1 p 3 ) 2 ( i 1 4 p 1µū 3 γ ν u 1 1 4 p 3µū 3 γ ν u 1 + m ) 1 4 η µνū 3 u 1 ( i 1 4 p 2ρū 4 γ σ u 2 1 4 p 4ρū 4 γ σ u 2 + m ) 2 4 η ρσū 4 u 2 = iπg (p 1 p 3 ) 2 ( (p 1 +p 3 ) (p 2 +p 4 ) ū 3 γ µ u 1 ū 4 γ µ u 2 + ū 3 (/p 2 +/p 4 )u 1 ū 4 (/p 1 +/p 3 )u 2 4m 1 m 2 ū 3 u 1 ū 4 u 2 ) 11

u i = u si (p i ), /p i = γ µ p iµ (/p m)u s (p) = 0 (p 1 + p 3 ) µ = (2m 1, 0) µ, (p 2 + p 4 ) µ = (2m 2, 0) µ, ū 3 γ µ u 1 = (2m 1, 0) µ δ s 3 s 1, ū 4 γ µ u 2 = (2m 2, 0) µ δ s 4 s 2, ū 3 u 1 = 2m 1 δ s 3 s 1, ū 4 u 2 = 2m 2 δ s 4 s 2 p, p, θ M = i4πgm2 1m 2 2 p 2 sin 2 (θ/2) δs 3 s 1 δ s 4 s 2 dσ dω = M 2 64π 2 (m 1 +m 2 ) 2 = G2 m 2 1m 2 2m 2 4 p 4 sin 4 (θ/2) δs 3 s 1 δ s 4 s 2 p µ 1 = p (1, 0, 0, 1) µ, p µ 2 = p (1, 0, 0, 1) µ, p µ 3 = p (1, sin θ, 0, cos θ) µ, p µ 4 = p (1, sin θ, 0, cos θ) µ u 1 = { 2 p (1, 0, 0, 0) T 2 p (0, 0, 0, i) T, u 2 = { 2 p (0, i, 0, 0) T 2 p (0, 0, 1, 0) T, u 3 = { 2 p (c, s, 0, 0) T 2 p (0, 0, is, ic) T, u 4 = { 2 p ( is, ic, 0, 0) T 2 p (0, 0, c, s) T, c = cos(θ/2), s = sin(θ/2). u s ( p) = γ 0 u s (p) 2 p (c, s, is, c) µ (s 1 = s 3 = +1) ū 3 γ µ u 1 = 2 p (c, s, is, c) µ (s 1 = s 3 = 1) 0 (s 1 s 3 ), 2 p (c, s, is, c) µ (s 2 = s 4 = +1) ū 4 γ µ u 2 = 2 p (c, s, is, c) µ (s 2 = s 4 = 1) 0 (s 2 s 4 ) 12

(p 1 +p 3 ) µ = 2 p (1, sc, 0, c 2 ) µ, (p 2 +p 4 ) µ = 2 p (1, sc, 0, c 2 ) µ i8πg p 2 1 + 3 cos2 (θ/2) sin 2 (s 1 = s 3 = s 2 = s 4 ) (θ/2) M = i8πg p 2 3 + cos2 (θ/2) tan 2 (s 1 = s 3 s 2 = s 4 ) (θ/2) 0 (s 1 s 3 s 2 s 4 ) G 2 p 2 ( 1 + 3 cos 2 ) 2 (θ/2) 4 dσ dω = M sin 2 (s 1 = s 3 = s 2 = s 4 ) (θ/2) 2 64π 2 (2 p ) = G 2 p 2 ( 3 + cos 2 ) 2 (θ/2) 2 4 tan 2 (s 1 = s 3 s 2 = s 4 ) (θ/2) 0 (s 1 s 3 s 2 s 4 ) 13

................... 8....................... 8.....................................5......................... 5......................... 4................................ 9.....................................8.....................................8............................... 10 14