信学会チュートリアル

Similar documents
光産業の将来ビジョン―ボーダレス化の中での進化と展開―(1BIZYON)

IP時代のトランスポート:FLASHWAVE

SCAT87_cs4.indd

MPLS-Japan_Esaki_2001.PDF

(1) CCITT X.25 (HDLC/LAPB) SDLC (Synchronous Data Link Control protocol) HDLC High-speed Data Link Control protocol ITU-T/ISO ADCCP Advanced Data Comm

Flow Control Information Network 1 /

トラフィックの急増と変動に対応するトランスポート系運用管理技術

IP IP MTU Maximum Transfer Unit MTU MTU [2] i

total-all-nt.dvi

1

Run-Based Trieから構成される 決定木の枝刈り法

膨張する幹線トラフィックに対応する超高速トランスポート

8 P2P P2P (Peer-to-Peer) P2P P2P As Internet access line bandwidth has increased, peer-to-peer applications have been increasing and have great impact

total.dvi

IP RTP 2 QoS i

untitled

橡T PDF

IEEE e

橡MPLS-Japan-shared-fastreroute.PDF

Broadband Internet I / 1 1 I / 1 2


VLAN VPN mapped MPLS ~実稼動するVPLSネットワーク~

untitled

A Responsive Processor for Parallel/Distributed Real-time Processing

2017 (413812)

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

main.dvi

untitled

橡2-TrafficEngineering(revise).PDF


1


untitled

IPSJ SIG Technical Report * Wi-Fi Survey of the Internet connectivity using geolocation of smartphones Yoshiaki Kitaguchi * Kenichi Nagami and Yutaka

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè1²ó

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

C08.PDF

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

PowerPoint Presentation

単位、情報量、デジタルデータ、CPUと高速化 ~ICT用語集~

$ ifconfig lo Link encap: inet : : inet6 : ::1/128 : UP LOOPBACK RUNNING MTU:65536 :1 RX :8 :0 :0 :0 :0 TX :8 :0 :0 :0 :0 (Collision

F9222L_Datasheet.pdf

2 PC [1], [2], [3] 2.1 OS 2.1 ifconfig 2.1 lo ifconfig -a 2.1 enp1s0, enx0090cce7c734, lo 3 enp1s0 enx0090cce7c734 PC 2.1 (eth0, eth1) PC 14

Extreme ~ Business Optimized Infrastructure ~ Business Optimized Infrastructure NEW Access Architecture NEW Aggregation Architecture (Triump

Katsuhito Asano Fujitsu LTD /Apr/2002 1

6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

光アクセスの可能性を大きく広げる10G-EPONシステム

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

IEEE ax:第 6 世代の Wi-Fi テクニカル ホワイト ペーパー

ルータ(IPv6)掲示用池田.PDF

次世代モバイルネットワークの概要


WMN Wi-Fi MBCR i

untitled

Cisco 1711/1712セキュリティ アクセス ルータの概要

IP: TCP: QoS 90 QoS IP IP IP

Vol. 44 No. SIG 12(TOD 19) Sep MF MF MF Content Protection Mechanism Based on Media Framework and an Implementation for Autonomous Information C

160311_icm2015-muramatsu-v2.pptx

MOTIF XF 取扱説明書

ITAOI2003第三屆離島資訊與應用研討會論文範例

GPGPU


Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

I TCP 1/2 1

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

Motivation 3 Motivation 4 (Availability) Keep High Availability Providing Reliable Service (New service, function) Provide new Services, with new func

wide93.dvi

untitled

DTN DTN DTN DTN i

2

公平なネットワーク利用を実現する スケーラブルな パケットスケジューリング方式

VoIP Broadcasting System 2/2 IP Convergence Communication Solution IP paradigm Integration & Management VoIP IP VoIP VoIP IT < >

160GHz

LTC ビット、200ksps シリアル・サンプリングADC

Microsoft PowerPoint MPLS japan 2010, OTNのアプリケーション[NEC 松田].ppt

DEIM Forum 2017 E Netflix (Video on Demand) IP 4K [1] Video on D

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

設計現場からの課題抽出と提言 なぜ開発は遅れるか?その解決策は?

橡ATM_GE.PDF

JANOG14-コンバージェンスを重視したMPLSの美味しい使い方

untitled

- March IMF IMF IMF ITO The General Agreement on Tariffs and Trade

QOS.dvi

Microsoft PowerPoint - 17 情報工学講義第3_木5限_for_学生0410.pptx

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

スライド 1

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

QoS サービス品質 コンテンツ配信技術 12 菊池浩明

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

SCREENOS NAT ScreenOS J-Series(JUNOS9.5 ) NAT ScreenOS J-Series(JUNOS9.5 ) NAT : Destination NAT Zone NAT Pool DIP IF NAT Pool Egress IF Loopback Grou

Express5800/320Fa-L/320Fa-LR

AV 1000 BASE-T LAN 90 IEEE ac USB (3 ) LAN (IEEE 802.1X ) LAN AWS (Amazon Web Services) AP 3 USB wget iperf3 wget 40 MBytes 2 wget 40 MByt

2

組込みシステムシンポジウム2011 Embedded Systems Symposium 2011 ESS /10/20 FPGA Android Android Java FPGA Java FPGA Dalvik VM Intel Atom FPGA PCI Express DM

FUJITSU ULTRA LVD SCSI Host Bus Adapter Driver 3.0 説明書

,4) 1 P% P%P=2.5 5%!%! (1) = (2) l l Figure 1 A compilation flow of the proposing sampling based architecture simulation

2011 I/ 2 1

Transcription:

E-mail: Kitayama@comm.eng.osaka-u.ac.jp

MPLS

Total U.S. Internet Traffic 100 Pbps 10 Pbps Limit of same % GDP as Voice 1 Pbps 100Tbps 10Tbps New Measurements 1Tbps 100Gbps 10Gbps Voice Crossover: August 2000 Projected at 4/Year 1Gbps 100Mbps 10Mbps 1Mbps ARPA & NSF Data to 96 2.8/Year 4/Year 100Kbps 10Kbps 1Kbps 100 bps 10 bps 1970 1975 1980 1985 1990 1995 2000 2005 2010 U.S. Internet Traffic Source: Roberts et al., 2001 COPYRIGHT 2001 CASPIAN NETWORKS, INC.

Two basic types of architectures: Voice & data Arrival If not busy Arrival Buffer Busy Call loss Queuing delay=0 Cost Packet loss Queuing delay Circuit switching POTS QoS guaranteed Stream data Packet switching Internet Best effort service: Only connection guaranteed by TCP/IP Burst data

QoS must be differentiated Media Data Real-time Picture Voice Granularity Packet Burst Burst Stream Stream Latency 400ms a few sec A few 10ms Jitter 500ms a few sec A few ms Optical layer must play roles for Diffserve&Intserve! Packet loss 10-9 -11 10 10-9 -11 10 < 10-2 < 10-2 *It takes 50 [msec] across the Pacific Ocean through the optical fiber.

: QoS

Network design philosophy: Two choices Two extremes; #1 Stupid network* Abundant bandwidth ** But terminal must be intelligent #2 Active network Intelligent node under bandwidth constraint * D. S. Isenberg, The Dawn of the Stupid Network, ACM Networker 2.1, pp. 24-31, February/March 1998. **G. Gilder, Telecosm: How Infinite Bandwidth Will Revolutionize Our World, The Free Press, New York, 2000.

Explosive increase of power consumption & size of node Power consumption&size/node (Ratio) 100 97.7 90 80 70 60 50 40 R=1@2000 30 23.2 20 10 3.1 0 2000 2001 2002 2003 2004 2005 Year S.Nojima, Fujitsu Labs. Rate of traffic increase R=1@2000 R=2 R=3 R=4

OXC switch vs. e-xc switch :Power consumption & size e-xc switch OXC switch Size 1/3 @2.5Gb/s 2 3@10Gb/s 1 @2.5Gb/s 1 @10Gb/s Power consumption >3 @2.5Gb/s >3 @10Gb/s 1 @2.5Gb/s 1 @10Gb/s S.Nojima, Fujitsu Labs.

MPLS

IP IP IP IP

パケット単位n処理 統計多重 統計多重 帯域予約不要 帯域予約不要 最小データ粒度 最小データ粒度 ストア フォワード ストア フォワード 回線交換型 回線交換型 IPルータとOXCの機能統合 IPルータとOXCの機能統合 最大データ粒度 最大データ粒度 カットスルー カットスルー 光パケットルーティングによる NW λ1 λ2 λ1 λ 3 λ3 λ2 目標領域 WDM 回線交換型 回線交換型 集中管理 集中管理 IPルータとOXCの個別運用 IPルータとOXCの個別運用 最大データ粒度 最大データ粒度 カットスルー カットスルー 波長の動的な運用 波長の固定的運用 データの粒度 (粗 細 フォトニックネットワーク技術の研究開発の展開 フォトニックラベルスイッチ ルータによる NW (光ストリーム 光バースト WDM OXCに基づくNW WDMリンク WDMリンク 高ビットレート化 高ビットレート化 超多波長 超高密度化 超多波長 超高密度化 トランスペアレンシー拡大 トランスペアレンシー拡大 OADM : Ootical Add/Drop Multiplexer OXC : Optical Cross-connect p-to-p WDM 伝送 2001 2002.3.27 北山 WDMリングNW OADM 2005 2002年電子情報通信学会総合大会チュートリアル 2010 Osaka Univ Univ..

DWDM OC-3/12 (156M/622Mb/s) 10/100 M Ethernet IX IX: Internet exchange

Generic architecture of packet switch λ-demux Buffer λ-mux λ-mux

Osaka Osaka Univ Univ. 2002.3.27

In Label Out Label λ10 λ4 In Label Out Label In Label Out Label λ4 133.1.12.4 133.1.12.14 λ10 λ10 λ4 Core PLSR 133.1.12.14 133.1.12.14 Ingress PLSR Egress PLSR

MPLS

Photonic MPLS vs. Photonic packet switching Photonic MPLS network Cut-through LSP setup decoupled with forwarding Available hardware technology Circuit switching Scarcity of λ resource Flow aggregation not feasible Bottleneck at ingress nodes vs. Photonic packet switching Finest granularity Statistical multiplexing: Better BW utilization Slow e-header processing Photonic RAM not available Buffer scheduling required M. Murata and K. Kitayama, IEEE Network Magazine., vol.15, pp.56-63, July/Aug. 2001.

Optical burst switching Optical path must be set up immediately after a burst data arrives at the edge node! Sender LAN LAN Edge network Edge router Core network Burst data LAN Optical burst switch Receiver LAN

Photonic burst switching OB data IP router OXC switch λ Ingress router Offset time Reservation λ λ Egress router Transmission λ λ λ Release λ λ λ

Challenges of photonic burst switchings Resource reservation protocol (RSVP) Overcoming the round-trip time delay for path setting Contention resolution of optical control packet High-speed processings for optical control packet Overhead time must be much shorter than the burst-length Burst assembly A potential bottleneck

MPLS

Target performance of photonic packet router Performance Processing capability Throughput Number of address entries Target 1 100 [Gpps] 10M* 100 [Mpps] 100Tb/s 1P/s 10Gb/s 1k 10k 10k 100k Current electronic router *Hitachi GR2000 has the processing capability of 4[Mpps].

Photonic label space Number of addresses Table lookup Disadvantages Wavelength 1000 Simple Optical filter Not large enough Flow merge impossible Subcarrier (m-wave) 100 Milimeter-wave filter Not fast enough < 40Gb/s Optical codes Abundant Ultra-fast Passive device Optical encoder/correlator Impairments in propagation

Optical encoder/decoder Intensity [a.u.] 1 Pulse train @10GHz 100[ps] 2.0 [ps] 5ps Variable tap 0 0 20 40 60 80 100 120 140 Time [ps] Auto-correlation #1 #8 Optical phase shifter Intensity [a.u.] 1.0 0.5 0.0 8-chip bipolar code 5ps 2ps -40-20 0 20 40 Time [ps] Combiner Cross-correlation Planar lightwave circuit Processing done at the speed of light Optical correlation using a passive device No logic operation Correlation based on matched filtering 2002.3.27 K. Kitayama et al., J. Lightwave Technol., Dec.,2000.

Parallel photonic label processing based upon optical code correlation Parallel photonic label processing Power-split as many copies as the count of label entries Optical correlations between the copies and label entries in parallel Input Replicas Address entries Output #1 Duplication t x10 4... t Correlation x t... t t t Auto-correlation t # 10 4 Cross-correlation t t t

Architecture of photonic packet router for asynchronous variable-length packet Optical Switching Unit Optical Scheduling Unit Optical Buffering Unit Scheduler S 1 Scheduler S 1 - λ W I 1 λ-demux λ W λ W Header Photonic label processor Photonic label processor Optical Optical SW1 SW Optical Optical SW1 Header Time sequencer λ W 1 λ W OC Encoder/ OC Decoder Encoder/ Decoder λ λ 1 λ W τ0 τ1 τ2 b 1W τ0 τ1 τ2 b 11 λ W λ-mux - λ W O 1 Scheduler S 2 Scheduler S 2 - λ W I 2 λ-demux λ W λ W λ Photonic label 1 processor Photonic label processor Optical Optical SW1 SW Optical Optical SW1 Header Header Time sequencer λ W λ W OC Encoder/ OC Decoder Encoder/ Decoder λ λ 1 1 λ W τ0 τ1 τ2 b 1W τ0 τ1 τ2 b 11 λ W λ-mux - λ W O 2

0 π π 0 0 π 0 t 0 T 0 T t t K. Kitayama, Seminar @Univ. Southanmpton (2000.9.14)

Dynamically reconfigurable OCDMA en/decoder 5x2[mm]x5[ps/mm] =50[ps] 50[ps]x7=350[ps] 2002.3.27 M.R.Mokhtar et al, OFC2002, ThGG54 (Anaheim, March 2002)

WDM fiber delay line (FDL) Single-λ FDL Packet 1 FDL1 Packet 2 FDL2 Single-λ FDL WDM FDL with λ converters 1 l-conv λ N l-conv λ N WDM FDL A. Ge, L. Tancevski, G. Castanon, L.S. Tamil, Proceedings of OptiComm 2000: Optical Networking and Communications, pp.247-256, 2000.

Photonic memory? T N n v Vg =L/ Delay =229/7=33[µm/µs] Vg=c/10 7 Vg =17[m/s] n 2 =1.8x10-5 [m 2 /W] vs. 2.7x10-20 [m 2 /W] of optical fiber L. V.Hau et al., NATUR, Vol.397, Feb. 1999 Light speed reduction to 17 metres per second in an ultracold atomic gas 2002.3.27

Optical packet synchronizer 16[ns]x8x8 steps =1024[ns] 2002.3.27 T. Sakamoto et al, OFC2002, ThGG106 (Anaheim, March 2002)

Optical packet synchronizer Time-slotted Packet format

1. 2. 2-1. IT 2-2. 2-3. EC 3. 3-1. IP NTT 3-2. IP NEC 3-3. 3-4. 3-5. Key ACCESS 4. 4-1. & ( ) 4-2. NEC 5.

Osaka Osaka Univ Univ. 2002.3.27

Thank you!