A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

Similar documents
untitled

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

土木学会構造工学論文集(2011.3)

Vol. 62A ( ) Fundamental consideration on the redundancy of a steel Langer bridge based on nonlinear finite element analysis Isao Saiki, Kota Ka

n-jas09.dvi

Steel Construction Vol. 6 No. 22(June 1999) Engineering

I II III IV V

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

土木学会構造工学論文集(2009.3)

P.3 P.4 P.9 P.11

dvipsj.4852.dvi

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat



6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

1/3 (b) (D)=330330(mm) M/(QD)=2.0 6 (F c )80 N/mm 2 120N/mm 2 F c RC 16- D22(SD490)16-D19(USD685) (PCa) 16 4 PC -RB6.2(SBPD p w =0.73% C

鉄筋単体の座屈モデル(HP用).doc


System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi


国土技術政策総合研究所 研究資料

* * 2

第七回道路橋床版シンポジウム論文報告集 Experimental Study on Fatigue Resistance of RC Slab with UFC Panel for Wheel Running Fatique Test * ** ** *** **** Kazuhiko Minaku

1..FEM FEM 3. 4.

A Practical Calculating Method on Spring Characteristics and Stresses of Coiled Wave Springs Hideki TAKAHASHI, Naoko KAWAMURA, Takahiko KUN

S-6.indd

P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19

X

1

技術研究所 研究所報 No.80

r z m ε r ε θ z rθ

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A

NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

koji07-02.dvi

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

7章 構造物の応答値の算定

3 ( 9 ) ( 13 ) ( ) 4 ( ) (3379 ) ( ) 2 ( ) 5 33 ( 3 ) ( ) 6 10 () 7 ( 4 ) ( ) ( ) 8 3() 2 ( ) 9 81

修士論文

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

_Y05…X…`…‘…“†[…h…•

立命館21_松本先生.indd



立命館20_服部先生.indd




立命館16_坂下.indd



立命館人間科学研究No.10



立命館21_川端先生.indd

立命館14_前田.indd

立命館17_坂下.indd


立命館人間科学研究No.10



立命館19_椎原他.indd

立命館人間科学研究No.10

立命館19_徳田.indd


北海道体育学研究-本文-最終.indd

<82E682B15F96702E696E6464>

若者の親子・友人関係とアイデンティティ

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Photo. 1. Scale banding in roughing mill work roll. Photo. 2. Etched micro-structure of alloyed grain iron roll. Photo. 3. Etched micro-structure of a

.I.v e pmd

untitled

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

JFE.dvi

The Effects of Tax Revenue by Deductions of National Income Tax and Individual Inhabitants Tax The national income tax and individual inhabitants tax

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

2 1 ( ) 2 ( ) i

013858,繊維学会誌ファイバー1月/報文-02-古金谷

untitled

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

NDIS ( )

技術研究報告第26号

24 Depth scaling of binocular stereopsis by observer s own movements

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

hiroko_city_paper17_final.dvi

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

The Japanese Journal of Psychology 2000, Vol. 71, No. 3, Emotion recognition: Facial components associated with various emotions Ken Gouta and


年次大会原稿最終.PDF

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals

Transcription:

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, 213. Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *** **** ***** Noriyuki KUBO, Takeshi SAKAI, Shinji OHGUCHI, Ikuhiro UMEHARA and Akinori NAKAJIMA * -68 3-2-5 ** 14-54 4-5-17 *** IHI 18-23 3-17-12 **** 14-53 2-5-24 ***** 321-8585 7-1-2 In this paper, three dimensional FEM analysis is conducted referring the experimental results about the shear strength distributional property of perfobond strip having plural perforations. Results of the FEM analysis are also compared with the experimental ones. In this analysis, the analytical conditions are refined focusing on the stress-strain relation of concrete, boundary condition of the steel plate and the surrounding concrete, treatment of the reinforcing bars and so on and most suitable case is found to reproduce the experimental results averagely. Moreover, the shear force-relative slip relation, the shear strength distributional property along the longitudinal perforation and the strain behavior of the steel plate by the FEM analysis are investigated and these results show almost similar tendency as the experimental ones. Key Words: hybrid structure, PBL, concrete, non-linear analysis PBL 1) 2) FEM 1 2) 1~3 6 FEM FINAL version11 Case-5 Z I_237

1 1 1 2 1 3 2 4 2 5 3 6 3 Y X 1 mm 1 2 3 A1 A2 A B H1 H2-1 1 H3 H 4 6 t D1 D2 6 13 (a) (b) 4 Z (a) X Y (b)xy () 5 mm 1 2 3 C1 C2 h1 h2 h3-65 7 13 h4 65 1 1 2 3 4 6 1/4 mm 13mm 13mm 12 4 3 1~3 I_238

1 82 2 962 3 14122 4 5 1/4 4(b) (Z ) (X,Y ) (N/mm 2 ) t / F t 1.8.6.4.2 (a) (.75,.25) F t /G F (b) 7 6 (1) c t G F E (1)~(3) d max 25mm t =.33 c 3) (N/mm 2 ) (1) G F = 1(d max ) 1/3 c 1/3 (N/m) (2) E = (.114 c.582) 1 5 (kgf/cm 2 ) (3) c 35.6 N/mm 2 t 1.97 N/mm 2 G F 4).96191 N/mm E27, N/mm 2.2 7(a) Ahmad 5) 8 6) 7(b) 4) (2) 36 N/mm 2 38 N/mm 2 373 N/mm 2, N/mm 2.3 2% 9 () 8 σ (N/mm 2 ) 4 4 3 3 2 1 4 6 8 ε (μ) 9 I_239

δ1 δ2 Case No. Case 2 1 1 δ δ1δ2 step/1mm δδ1δ2 2 34 2 (1)Case-1 11(a) 11(b) 2).247 N/mm 2 /mm.148 N/mm 2 2.4% 4.1N/mm 2 33,6 N/mm 2 (2)Case-2 Case-1 6) 1 2 1 3 2 11 12 7) 4 3 Case-3 5 3 6 3 (a) σ V (kn) 1 H=48mm δ (mm) (b) (H) C=.2 C=.4 C=1. H=32mm H=16mm (1)1.97 N/mm 2 7) 12 C 1. (3)Case-3 Case-2 (3) 27,N/mm 2 4) (4)Case-4 Case-3 5(b) Z XYZ ε I_24

(5)Case-5 Case-3 8 (6)Case-6 4 Case-3 u 8) 1.92 N/mm 2 3 4 1314 3,4 1 3 1 2 1 2 (1)Case-1 3 4.5mm (2)Case-2 Case-1 Case-1 (3)Case-3 (4)Case-4 Case-3 (5)Case-5 Case-3 (6)Case-6 4 (kn) (kn) 2 1 13 3 3 3 2 1 Case-2 Case-1 Case-3 Case-5 Case-4 δ (mm) Case-3 Case-1 Case-4 Case-2 Case-6 Case-5 14 4 Case-3~5 Case-3 Case-5 Case-5 Case-1 Case-2 Case-3 Case-4 Case-5 δ (mm) Case-1 Case-2 Case-3 Case-4 Case-5 Case-6 4. Case-5 1~6 I_241

(kn) (a) 1 (b) 2 15 1 (kn) 2 1 δ (mm) (kn) δ (mm) (a) 3 (b) 4 16 2 (kn) 14 12 8 6 4 2 δ (mm) 4 3 3 2 1 δ (mm) (kn) (kn) 6 4 2 δ (mm) 17 3 15~17 9 9) 1mm 3 1 4 5 1 2 3 3 2 1 6 4 3 δ (mm) (a) 5 (b) 6 18 16 14 12 8 3 1 2 1 1 112 kn 127 kn 12 kn 112 kn 82 kn 3 2 182 kn 196 kn 189 kn 221 kn 164 kn 5 3 372 kn 291 kn 332 kn 336 kn 246 kn 1 2 2 1 119 kn 156 kn 138 kn 137 kn 164 kn 4 2 275 kn 287 kn 281 kn 283 kn 328 kn 6 3 433 kn 454 kn 444 kn 44 kn 493 kn 4 1 2 1 1 112 kn 127 kn 12 kn 112 kn 82 kn 3 2 91 kn 98 kn 95 kn 111 kn 82 kn 5 3 124 kn 97 kn 111 kn 112 kn 82 kn 19 kn 17 kn 18 kn 112 kn 82 kn 1 2 2 1 119 kn 156 kn 138 kn 137 kn 164 kn 4 2 138 kn 144 kn 141 kn 142 kn 164 kn 6 3 144 kn 151 kn 148 kn 135 kn 164 kn 134 kn 1 kn 142 kn 138 kn 164 kn 5 1 2 1 1 3.4 mm 8.2 mm 5.8 mm.8 mm 1.3 mm 3 2 1.8 mm 1.3 mm 1.5 mm 1. mm 1.3 mm 5 3 5.2 mm 5.6 mm 5.4 mm 2.2 mm 1.3 mm 1 2 2 1 6.7 mm 3.8 mm 5.2 mm.9 mm 3.6 mm 4 2 9.5 mm 3.9 mm 6.7 mm 1.8 mm 3.6 mm 6 3 3.9 mm 5.2 mm 4.5 mm 4.1 mm 3.6 mm (1) 1,3,5 4 1 14% 76% 1 1% 5 3 1,5 15(a)~17(a) I_242

(2) 2,4,6 4 1 97% 115% 1.21.3 2 1 5% 5 6 2,4 15(b)~17(b) 4,6 18~19 2~21 6 7 2~21 7 4 1 (1) 18~19 6 (2) 6 3,4 8 % 7 % 6 % % 4 % 3 % 2 % 1 % % (kn) 18 2 8 % 7 % 6 % % 4 % 3 % 2 % 1 % % (kn) 19 3 3 5 4 6 6 2 3 2 3 1 2 63 % 69 % 66 % % 37 % 31 % 34 % % 46 % 53 % % 39 % 33 % 25 % 29 % 28 % 21 % 22 % 22 % 33 % 1 2 61 % 62 % 62 % % 39 % 38 % 39 % % 45 % 48 % 47 % 36 % 32 % 32 % 32 % 31 % 23 % 2 % 22 % 33 % 5,6 I_243

(kn) (kn) 1 11kN 14kN (kn) 2 2 2 1 14kN 11kN (kn) 21 3 7 1 2 1 11 kn 3 2 115 kn 135 kn 125 kn 111 kn 67 kn 61 kn 64 kn 111 kn 171 kn 154 kn 163 kn 131 kn 5 3 123 kn 73 kn 98 kn 94 kn 78 kn 64 kn 71 kn 111 kn 1 2 1 14 kn 4 2 168 kn 178 kn 173 kn 142 kn 17 kn 19 kn 18 kn 142 kn 195 kn 218 kn 26 kn 145 kn 6 3 139 kn 145 kn 142 kn 125 kn kn 91 kn 95 kn 133 kn (3) 2~21 1/2 7 1 1 2~21 (2) 22~23 23 5,6 17 5,6 153μ 5 1,~3,μ 6 4,~5,μ 5 8,μ 6 2,μ 4 5 5,6 (3) I_244

Case-5 17 1 2 3 4 5 6 9 1 1 1213 14 (kn) (kn) (kn) 2 1 1,4 1,4-6 -4 - ε (μ) 2 1 2,5 2,5-6 -4 - ε (μ) 2 1 mm 9 9 9 1 2 3 4 5 6 (kn) (kn) (kn) 3 3 2 1 1,4 1,4-8 -6-4 - ε (μ) 3 3 2 1 2,5 2,5-8 -6-4 - ε (μ) 3 2 1-1 -8-4 -1 - - ε (μ) ε (μ) (a) 3 (b) 4 22 2 9 9 (kn) (kn) (kn) (kn) (kn) 4 3 1,4 1,4-1 -8-4 ε (μ) 4 3 2,5 2,5 --8-6-4- ε (μ) 4 3 9,12 9,12 - -2 ε (μ) 4 3 1,13 1,13 - -2 ε (μ) 4 3 mm 17 17 4 3 1,4 1,4-1 -8-4 ε (μ) - - -3 - - ε (μ) ε (μ) (a) 5 (b) 6 23 3 (kn) (kn) (kn) (kn) (kn) 4 3 2,5 2,5-1 -8-4 ε (μ) 4 3 9,12 9,12-8 -4 ε (μ) 4 3 1,13 1,13-8 -4 ε (μ) 4 3 17 17 I_245

Case-5 1.2~1.3 2 1 1 3 4 FEM 1) FEM Vol.11pp.283-298.8 2) Vol.57A pp.996-6211.3. 3) Collins, M.P. and Mitchell, D.Prestressed Concrete Structures, Prentice Hall, Englewood Cliffs, NJ, pp.766, 1991 4) 7 5), 474, pp.163-17,1995.8 6) H. Nakamura T. Higai: Compressive Fracture Energy and Fracture Zone Length of Concrete Seminar on Post-peak Behavior of RC Structures Subjected to Seismic Load JCI-C51E Vol.2 pp.259-272 1999.1 7) No.87.9-1 pp.17-12 1987.9 8) 212.3. 9) 9 9.12. 213 3 18 I_246