第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

Similar documents
n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

58 10

28 Horizontal angle correction using straight line detection in an equirectangular image

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D

2007-Kanai-paper.dvi

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

2 ( ) i

A Construction of Hybrid Adaptive Control System Using a Fixed Compensator Shiro MASUDA*, Hiroshi OKAMOTO** and Akira INOUE* In this paper, we propose

1 I/F I/F 1 6) MobileIP 7) 8) MN: Monile Node MN AR Mobility Anchor Point(MAP) MobileIP HMIP HMIP HA-MAP MN MAP MN MAP HMIP MAP MN 2 MobileIP Mo

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

P2P P2P peer peer P2P peer P2P peer P2P i

ohgane

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Table 1 Table 2

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

JFE.dvi

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

Fig. 1 Table l l l l l l l l l l l l l l l l l l l l l l l l l l

.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

IPSJ SIG Technical Report Vol.2013-SLDM-160 No.7 Vol.2013-EMB-28 No /3/13 CAN-Ethernet 1,a) CAN-Ethernet CAN CAN CAN OMNeT++ CAN Ether

gengo.dvi

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1


Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

Consideration of Cycle in Efficiency of Minority Game T. Harada and T. Murata (Kansai University) Abstract In this study, we observe cycle in efficien

(a) Picking up of six components (b) Picking up of three simultaneously. components simultaneously. Fig. 2 An example of the simultaneous pickup. 6 /

IPSJ-TOM

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

第 55 回自動制御連合講演会 2012 年 11 月 17 日 18 日 京都大学 2I202 風速予測モデルの検討と カルマンフィルタに基づく短期風力発電予測 石川友規 滑川徹 慶應義塾大学 Short-Term Wind Speed Prediction for Wind Turbine Ap

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

9_18.dvi

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

HP cafe HP of A A B of C C Map on N th Floor coupon A cafe coupon B Poster A Poster A Poster B Poster B Case 1 Show HP of each company on a user scree

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

kut-paper-template.dvi

ブック 1.indb

CSR報告書2005 (和文)

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

鉄鋼協会プレゼン

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

Web Web ID Web 16 Web Web i

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

SICE東北支部研究集会資料(2012年)

橡 PDF

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

空力騒音シミュレータの開発

900 GPS GPS DGPS Differential GPS RTK-GPS Real Time Kinematic GPS 2) DGPS RTK-GPS GPS GPS Wi-Fi 3) RFID 4) M-CubITS 5) Wi-Fi PSP PlayStation Portable

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

i

bosai-2002.dvi

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

Sobel Canny i

光学

DTN DTN DTN DTN i

Human-Agent Interaction Simposium A Heterogeneous Robot System U

h23w1.dvi

浜松医科大学紀要

LAGUNA LAGUNA 10 p Water quality of Lake Kamo, Sado Island, northeast Japan, Katsuaki Kanzo 1, Ni

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

soturon.dvi

人文学部研究年報12号.indb

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

IPSJ SIG Technical Report Vol.2011-UBI-30 No /5/ , 1 1 Evaluation on Effect of Presenting False Information for Biological Information Vi

untitled

4.1 % 7.5 %

29_10_05.dvi

修士論文

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

TA3-4 31st Fuzzy System Symposium (Chofu, September 2-4, 2015) Interactive Recommendation System LeonardoKen Orihara, 1 Tomonori Hashiyama, 1

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

3_23.dvi

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

Mhij =zhij... (2) Đhij {1, 2,...,lMhij}... (3)

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

SERPWatcher SERPWatcher SERP Watcher SERP Watcher,

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT IPC FabCache 0.076%

Transcription:

第 55 回自動制御連合講演会 212 年 11 月 日, 日京都大学 1K43 () Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. Tokumoto, T. Namerikawa (Keio Univ. ) Abstract The purpose of this paper is to detect gas source which exists in the place where sensor is not arranged in the sensor network. For that purpose, interpolation of gas concentration of a strange domain is required. Therefore, we propose a novel algorithm of parameter estimation required for interpolation of gas concentration in a sensor network. Finally the proposed interpolation algorithm for gas concentration is verified via some numerical simulation results. Key Words: Sensor Network, Parameter Estimation, Interpolation 1, (WSN) 1,2).,, WSN, 3,4),,,,,., 5).,,,,, CO2. 6,7),, 6), CO2.,, CO2,, 2 Fig. 1 CO2,, CO2, Fig. 1: Purpose of Research (1) 8)., Fig. 2 c(x, t) t c(x, t) c(x, t) u(x, t) α(x, t) x x 2 s(x, t) Fig. 2: Advection-Diffusion (1) c(x, t) x, t CO2, s(x, t)/ x, t CO2, u(x, t), α(x, t) u, α 755

,.. (2)(4) c(x, t) t c(x, t ) c(x, t) (2) 1. w k, v k, h k (1), (11) {[ ] wk [ E v k w T k vk T h T ] } [ ] W k V (1) h k H E{w k x T }, E{v k x T }, E{h k x T } (11), x { c(x,t) x c(x,t) x c(x,t) c(x x,t) c(x x,t) c(x,t) x (u ) x (u < ) (3) c(x, t) 1 x 2 {c(x x, t) x2 2c(x, t) c(x x, t)} (4) (2)(4) (1) ( c(x, t ) 1 u ) 2α x x 2 c(x, t) { } ( u u) α 2 x x 2 c(x x, t) { } ( u u) α 2 x x 2 c(x x, t) s(x, t) (5), (5) c(x, t ) X t c(x, t) Y t c(x x, t) Z t c(x x, t) s(x, t) (6) (6), x k1 A k x k s k w k (7), (6) t, (7) k y k x k v k (8), x k [c(1, k), c(2, k),..., c(n, k)] T R N, y k [y 1 (k), y 2 (k),... y N (k)] T R N, y i (k) k i A k R N N, N s k1 s k h k (9) s k [s(1, k), s(2, k),..., s(n, k)] T R N. w k R N, v k R n, h k R N Fig. 3: Example, 2 S, (7),(8) (12), (13) c(1, k 1) c(2, k 1) c(3, k 1) c(4, k 1) c(5, k 1) y 1 (k) y 2 (k) y 3 (k) y 4 (k) y 5 (k) X k Y k Z k X k Y k Z k X k Y k Z k X k Y k Z k X k c(1, k) c(2, k) c(3, k) c(4, k) c(5, k) S v 1 (k) v 2 (k) v 3 (k) v 4 (k) v 5 (k) c(1, k) c(2, k) c(3, k) c(4, k) c(5, k) w 1 (k) w 2 (k) w 3 (k) w 4 (k) w 5 (k) (12) (12), c(2, k), (13) c(2, k 1) Zc(1, k) Xc(2, k) Y c(3, k) S w 2 (k) (14),, 1, 756

3 3.1, X k, Y k, Z k X k, Y k, Z k 3.2. 2. 2, (8) y k x k., (7) y k Q k p k s k w k (15) p k [X k Y k Z k ] T R 3, p k1 p k g k (16) g k, G R 3 3 Q k R N 3 y 1 (k 1) y 2 (k 1) Q k y 2 (k 1). y 1 (k 1) (). y N (k 1). y N (k 1) y N 1 (k 1) (9), (15), (16) [ ] [ ] [ ] [ ] pk1 pk I gk () s k1 s k I h k y k [ Q k I ] [ ] p k w s k (19) k (), (19) Q k [Q k I],, (2)(24) 9). [ ] [ ] ˆpk1 k ˆpk k ŝ k1 k ŝ (2) k k [ ] [ ] ˆpk k ˆpk k 1 ŝ k k ŝ k k 1 [ ]) K k (y k Q ˆpk k 1 k ŝ (21) k k 1 [ ] G P k1 k P k k H (22) P k k P k k 1 K k Q kp k k 1 (23) [ ] K k P k k 1 Q k Q T k P k k 1 Q T k W (24), ˆp k1 k p k, ˆp k k ŝ k1 k, ŝ k k (2)(24) (), (19), p k, s k Fig. 4: Problem Formulation Fig. 4 28, x 2[s] Table 1: Simulation Parameters Parameter Symbol Value Number of Sensor N 28 Dispersion Coefficients α.1[m 2 /s] Sensor Interval x 1[m] Sampling Time 1[s] System Noise w k N (,1e-3*I 28 ) Observation Noise v k N (,1e-3*I 28 ) Parameter Noise g k N (,5e-4*I 3 ) Emergence Noise h k N (,1e-3*I 28 ) Amount of Emergence s(, k) 5, I m m m Wind Speed [m/s].6.4.2.2.4.6.8.1 5 1 15 2 Fig. 5: True Value(Wind Speed),,. 25 2 15 1 5 5 5 1 15 2 Time[s] Fig. 6: Gas Concentration 757

X k, Y k, Z k s k ŝ k.8.8 6 6 Value of X.78.76.74.72 Value of X.78.76.74.72 Amount of Emergence (ppm) 5 4 3 2 1 Amount of Emergence (ppm) 5 4 3 2 1 Value of Y Value of Z.7 5 1 15 2 Fig. 7: True Value(X k ).2..16.14.12.1 5 1 15 2 Fig. 9: True Value(Y k ).14.13.12.11.1 5 1 15 2 Fig. 11: True Value(Z k ) Value of Y Value of Z.7 5 1 15 2 Fig. 8: Estimation(X k ).2..16.14.12.1 5 1 15 2 Fig. 1: Estimation(Y k ).14.13.12.11.1 5 1 15 2 Fig. 12: Estimation(Z k ),,. Y 2 x Z ( u u) α x 2 (25) ( u u) α 2 x x 2 (26), u u x (Z Y ) (27) u û Wind Speed [m/s].6.4.2.2.4.6.8.1 5 1 15 2 Fig. 13: Estimation(Wind Speed) 1 5 1 15 2 Fig. 14: True Value(s k ) 1 5 1 15 2 Fig. 15: Estimation(s k ) Fig. 7Fig. 12, Fig. 5 Fig. 13 s k Fig. 14 Fig. 15 4 4.1,, 3. 3,,, Fig. 16: Problem Formulation Fig. 16 j 2, j 1, CO2 j, j 1 (6), s(x, t), c(j, t ) Xc(j, t) Y c(j 1, t) Zc(j 1, t) (28) c(j 1, t ) Xc(j 1, t) Y c(j, t) Zc(j 2, t) (29) CO2 c(x, t ) c(x, t). c(x, t) c(x), c(j) Xc(j) Y c(j 1) Zc(j 1) (3) c(j 1) Xc(j 1) Y c(j) Zc(j 2) (31) 758

c(j), (j 1), (1 X)c(j) Zc(j 1) Y c(j 1) (32) Y c(j) (1 X)c(j 1) Zc(j 2) (33) X Y Z 1, c(j), (j 1) c(j) c(j 1) Y 2 Y Z Y 2 c(j 1) Y Z Z2 Z 2 Y 2 c(j 2) (34) Y Z Z2 Y 2 Y 2 c(j 1) Y Z Z2 Y Z Z 2 Y 2 c(j 2) (35) Y Z Z2. (CO2 ) c(j), c(j 1) I(j), I(j 1) 4.2. Fig. : Problem Formulation, 19 Table 2: Simulation Parameters Parameter Symbol Value Number of Sensor N 1 Number of State n 28 Dispersion Coefficient α.1[m 2 /s] Wind Speed u.5[m/s] Sensor Interval 3 x 3[m] Sampling Time 1[s] System Noise w k N (,1*I 28 ) Observation Noise v k N (,.1*I 1 ) Emergence Noise h k N (,1*I 28 ) 19, 5 19 Fig. Fig. 21 (a) 19 75 7 65 6 55 5 45 4 35 1 2 3 4 5 6 Fig. : True Value (b) 1 9 8 7 6 5 1 2 3 4 5 6 Fig. 2: True Value 75 7 65 6 55 5 45 4 35 1 2 3 4 5 6 Fig. 19: Interpolation 1 9 8 7 6 5 1 2 3 4 5 6 Fig. 21: Interpolation 19 Fig. Fig. 19,,, 4.3,,, Step 1. I(j), I(j 2) Xc(j 1) Y I(j 2) ZI(j) c (j 1) c (j 1), c(j 1) c (j 1) ŝ(j 1), c(j 1) j 1, ŝ(j 1). ŝ(j 1), j 1 s min ŝ(j 1) s max (36) s min, s max ŝ(j 1), j 1, 759

4.4 Table 2 s min, s max s min 45, s max 55. Fig. 22: Interpolation Algorithm(Step 1) Step 2. j c(j 1) Xc(j 1) Y c(j 2) Zc(j), c(j) I (j), I (j) (1 X)c(j 1) Y I(j 2) Z (37) ŝ(j) (34) I (j), Y 2 Y Z Y 2 c(j 1) (38) Y Z Z2 Z 2 Y 2 c(j 2) Y Z Z2 Y Z Y 2 ŝ(j) (39) Y Z Z2 Y 2 Y Z Y 2 Y Z Z 2 c(j 1) Z 2 Y 2 c(j 2) Y Z Z2 I(j) (4), I (j) I(j) Y Z Y 2 ŝ(j) (41) Y Z Z2. ŝ(j) s min, s max, j. 3. Fig. 23: Interpolation Algorithm(Step 2) Step 3. 2 j 2,, j 3, j 1 1 9 8 7 6 5 1 2 3 4 5 6 Fig. 24: True Value 1 9 8 7 6 5 1 2 3 4 5 6 Fig. 25: Interpolation, 5, CO2, 6),,,,, 1),,, :, (27) 2),, :,, 47-8, 649/656 (28) 3) K. Kosugi, S. Tokumoto and T. Namerikawa,Faulttolerant Sensor Network based on Fault Evaluation Matrix and Conpensation for Intermittent Observation., Proc. of 51st IEEE Conf. on Decision and Control, (212) (to be published) 4), :,, 47-8, 329/336 (211) 5),,, 28-2, 134/137, (21). 6) J. E. Weimer, B. Sinopoli, B. H. Krogh, Multiple source detection and localization in advectiondiffusion processes using wireless sensor networks., 3th, IEEE Real-Time Systems Symposium, 333/342, (29) 7) J. E. Weimer, B. Sinopoli, B. H. Krogh, A relaxation approach to dynamic sensor selection in largescale wireless sensor networks. Proceeding of IEEE International Conference on Distributed Computing Systems, 51/56, (28) 8), CFD --, (1996) 9),,, (2) 76