情報の構造とデータ処理

Similar documents
2

Łñ“’‘‚2004

プリント



すぐに使える!Essbase キューブ開発テクニック集

hands_on_4.PDF

CAC


Whitepaper - Why CM7

文書情報標準化ガイドライン.PDF

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

Gray [6] cross tabulation CUBE, ROLL UP Johnson [7] pivoting SQL 3. SuperSQL SuperSQL SuperSQL SQL [1] [2] SQL SELECT GENERATE <media> <TFE> GENER- AT

_02-5.ppt

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal

JEE 上の Adobe Experience Manager forms のインストールおよびデプロイ(WebLogic 版)

MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~

16soukatsu_p1_40.ai

PowerPoint プレゼンテーション

Sigma

IBM PureData

…l…b…g…‘†[…N…v…“…O…›…~…fi…OfiÁŸ_

1,.,,,., RDBM, SQL. OSS,, SQL,,.

Word ›žŠpŁÒ-flO“Z

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

ストラドプロシージャの呼び出し方

キャラクタ・セットの移行に関するベスト・プラクティス

内容 Visual Studio サーバーエクスプローラで学ぶ SQL とデータベース操作... 1 サーバーエクスプローラ... 4 データ接続... 4 データベース操作のサブメニューコンテキスト... 5 データベースのプロパティ... 6 SQL Server... 6 Microsoft



意外と簡単!? Oracle Database 11g -バックアップ・リカバリ編-


関係データベース

Oracle Web Conferencing Oracle Collaboration Suite 2 (9.0.4) Creation Date: May 14, 2003 Last Update: Jan 21, 2005 Version: 1.21

[1] Excel Excel... [3]. CSV RDF. [4] LinkedData. [5] LinkedData 1 RDF. OLAP. OLAP. [6] RDBMS. Excel CSV. CSV JSON RDF. Excel RDF. RDF RDF..

Oracle Rdb: PowerPoint Presentation


PostgreSQL の XML 機能解説と将来拡張への提言

Oracle Database 10g Release 2を使用したデータベース・パフォーマンス

untitled

ESA_UI_1110.PDF

SAP のプラットフォームとして IBM Cloudを選択すべき理由徹底解説 :SAPをクラウドで活用する 3つのパターン 最善の選択肢は? ERP をクラウド化したいと考える場合 企業システムの中心を担うだけにその実現方法は慎重に検 討したい IBM が SAP システム向けに用意する 3 つのサ

Windows Oracle -Web - Copyright Oracle Corporation Japan, All rights reserved.

3 4 SAP HANA 5 6 SAP HANA Xeon E7 v3 SAP HANA 6 8 OLTP OLAP 1 9 SAP S/4HANA SAP HANA Studio 13 14

”Žfi¶‰s‚ÒŒh”~”ŒŠá‘WŁ\”ƒ

スライド 1


# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

レジャー産業と顧客満足の課題

Transcription:

mizutani@ic.daito.ac.jp 2014

SQL

information system input process output

(information) (symbols) (information structure) (data) 201411 ton/kg m/feet km 2 /m 2

(data structure) (integer) (real) (boolean) (character) Pascal person const size = 64; // size type word = array[1..size] of character; // word person = record name: word; // person email: word; height: real; gender: char; age: 0..100; student: boolean; end;

person Pascal var he, she : person; // person he she // he.name = "taro"; he.email = "taro@hoge.ac.jp"; he.height = 175.3; he.gender = "M"; he.age = 20; he.student = true; she.name = "umeko"; she.email = "ume@foo.co.jp"; she.height = 170.0; she.gender = "F"; she.age = 24; she.student = false;

(information structure) (property) (value) (property) hasa S Q S has a property Q) S hasa (,Q) (S) = Q S (, ) hasa (, ) (, ) (, ) (, ) (,taro@hoge.ac.jp) (, )

hasa (table) (cm) field record 158 ume@foo.co.jp 172 taro@hoge.ac.jp 165 jiro@piyo.or.jp 170 hana@fuga.ac.jp Table: 1 5

(hierarchy) (upper concept) (lower concept) isa (tree) isa S P S is a P ) S isa P S P is isa isa 49 7

data set (set) a A A a A a A A a 1, a 2,..., a n {}, A = {a 1, a 2,..., a n } σ : 1, 2,..., n = {a σ(1), a σ(2),..., a σ(n) } A = {x x }

set operation A B U (union) (intersection) (difference) (complement) A B = {x x A x B} A B = {x x A x B} A B = {x x A x B} A c = {x x U A} 1 2 U = {x x 0 100 }, A = {y y U 7 } = {z z U 6 } A B, A B, A B, B A, A c A, B A ( a A) B A B (subset) A B A A A

= {,, } hasa (, ) = { } { } = {,, } = {} {} {} (empty set) ϕ A A ϕ = A, A ϕ = ϕ, A ϕ = A, ϕ A = ϕ, ϕ c = U ϕ 0

(direct product) (relation) A B a A b B (a, b) 2 ( binary relation) (a, b) (b, a) (a, b) = (c, d) a = c, b = d. A B = {(x, y) x A, y B} A B a A, b B 2 (a, b) A B. A = {a, b}, B = {x, y, z} A B = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}, B A = {(x, a), (x, b), (y, a), (y, b), (z, a), (z, b)}. A B R 2 (a, b) R arb arb bra A 1 A n = {(a 1,..., a n ) a i A i, i = 1,... n} (a 1,..., a n ) n (n-ary relation) R

a b 2 (a, b) A = {, }, B = {,, } R L = {(, ),(, )} A B R L, R L R l = {(, ),(, ),(, ),(, )} B A R l, R l, R l, R l 1 ap b a b A = {,, }, B = {,,, } P 2 aw b a b A = {,, }, B = {,,, } W

( 1 1=( ) 2=( ) 3=( ) 4= 5=( ) 1 ( 2 2

[ ] 40 1 2

:

case grammar 1968 Charles Fillmore

Table:

1. RDBMS 2. 3. (parallel computing) (Concurrent Computing) (distributed computing) (grid) (cloud computing)

(structured data) hasa (unstructured data) (metadata) (schema)

(database) (Database Management System) DBMS

Apple, Amazon Google

(data mining) 1 2 Web PageRank

RDBMS (table) (, ) RDBMS(Relational Database Management System) SQL(Structured Query Language) RDBMS RDBMS Microsoft Access( )/SQL Server, Oracle Database, IBM DB2/Infomix MySQL, PostgresSQL : Amazon RDB, Google Cloud SQL

(column) (row) (table) record i n- (, ) field 1 field 2 field 3 field 4 field 5 record 1 158 ume@foo.co.jp record 2 172 taro@hoge.ac.jp record 3 165 jiro@piyo.or.jp record 4 170 hana@fuga.ac.jp.... (1 ) n- field 1 =, field 2 =, field 3 = cm, field 4 =, field 5 =..

SQL