boost_sine1_iter4.eps



Similar documents

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

ron04-02/ky768450316800035946

( ) Loewner SLE 13 February

日本内科学会雑誌第97巻第3号


Sigma

Taro13-第6章(まとめ).PDF



I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

チュートリアル:ノンパラメトリックベイズ

一般演題(ポスター)

日本内科学会雑誌第98巻第3号

文庫●注文一覧表2016c(7月)/岩波文庫

PowerPoint プレゼンテーション

P_SyugojutakuKenzai_H14.pdf

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

<4D F736F F D CF097AC E A D836A B2E646F6378>

FX自己アフリエイトマニュアル

FX ) 2

yakuri06023‡Ì…R…s†[

10西宮市立中央病院/本文

北九州高専 志遠 第63号/表紙・表4

P-12 P P-14 P-15 P P-17 P-18 P-19 P-20 P-21 P-22

ニューガラス100/100目次

program08.pdf

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Microsoft PowerPoint _秀英体の取組み素材(予稿集).ppt

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

Ax001_P001_目次-1.ai

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 48

01.eps

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

数理.indd

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

名称未設定

meiji_resume_1.PDF




行列代数2010A

calibT1.dvi

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

tnbp59-17_Web:プO1/ky079888509610003201

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

B5‘·¢‡Ì…X…X…†PDFŠp

JPROM-PRINT

untitled

³ÎΨÏÀ

10:30 12:00 P.G. vs vs vs 2

genron-3

( ) ( ) ( ) ( ) PID

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Part () () Γ Part ,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

表紙_02



野岩鉄道の旅

曲面のパラメタ表示と接線ベクトル

Transcription:

3 (, 3D ) 2. 2 3.. 3D 3D....,,. a + b = f, a, f. b a (.) b a.: b f (.2), b f., f.2.

2 Y y Q(X,Y,Z) O f o q(x,y) Z X x image plane.2:.2, O, z,. O..2 (X, Y, Z) 3D Q..2 O f, x, y X, Y. Q OQ q, q (x, y). x = f X Z, y = f Y Z (.3).3 Q (X, Y, Z) (x, y) (perspective transformation)...3, 3D,. 3D u = (u, u 2, u 3 ) t.4, q., t... [.] 3D u q. O q (x, y, f) u []. ( ) (X 0, Y 0, Z 0 ), u 3D t,. X = X 0 + tu, Y = Y 0 + tu 2, Z = Z 0 + tu 3 (.4),. x = f X Z = f X 0 + tu Z 0 + tu 3,

.. 3D 3.3: 3D Y y q Z O u x X.4: t, (X 0, Y 0, Z 0 ). y = f Y Z = f Y 0 + tu 2 Z 0 + tu 3 (.5) x = fu /u 3, y = fu 2 /u 3 (.6).. (f u u 3, f u 2 u 3, f) (.7) O (u, u 2, u 3 ) t.

33 2,.,.,.,. 2.. 2.,., (pixel).,, (, ) A/D., 8bit, 0 255 256. (a) (b) 2.:

34 2 2..,,,. 2.2 (x, y), w(i, j), f(x, y), f(x, y). w 2.2: f(x, y) = Σ s s Σ i= s j= s w(i, j)f(x + i, y + j)/ Σ s s Σ i= s j= s w(i, j) (2.), s 2s +. w(i, j) =, Gaussian. Gaussian w(i, j). w(i, j) = exp( i2 + j 2 2σ 2 ) (2.2) σ 2., σ 2., 2.3(a) 2.3(b). 2.3(a) 2.3(b)., σ 2 Gaussian 2.4(b),(c). σ 2,. 2..2,.,,.,

2.. 35 (a) (b) 2.3: (a) (b) σ = 0.5 (c) σ = 2.0 2.4: Gaussian. (Sobel) 2.5 3 3. x D x y D y j 2 0 0 2 2 0 0 0 0 2 i (a) Dx (b) Dy. 2.5: g x (x, y) = Σ Σ i= j= D x (i, j)f(x + i, y + j)

05 3, 2,,,. 3. Bayesian Filter [33],,., [33].. 3.. F. F x...x F. x i x i. x i, i =,..., F z i, i =,..., F. X : {x,..., x }, Z : {z,..., z }., p i p(x i x,..., x i, z,..., z i ).,. P = p(x :F Z :F ) = p(x Z )p(x 2 X, Z :2 )...p(x F X :F, Z :F ) = p p 2...p F (3.), t p i p t i. p t i p(x t i X t :i, Z t :i, p t i ) (3.2)

06 3,. P t = p(x t,...x t F z t,...z t F ) = p(x t Zt, pt )...p(x t F Xt :F, Zt :F, pt F ) = p t p t 2...p t F (3.3) Bayesian filter Bayesian filter p(x t Zt0:t )., x x i, i <. section. Bayesian filter hypothesis generation-hypothesis correction. (Hypothesis generation), dynamic model p(x t xt ) t p(x t Z t0:t ). p(x t Zt0:t ) = x t p(x t xt )p(x t (lielihood) hypothesis correction. (Hypothesis correction) Z t0:t )dx t (3.4) observation model p(z t xt ), t p(xt Zt0:t )., α t. p(x t Z t0:t ) = α t p(z t x t )p(x t Z t0:t ) (3.5) Bayesian filter Kalman filter particle filter.. a.kalman filter dynamic model p(x t xt ) observation model p(z t xt ). p(x t x t ) = N(H t x t ; Σ t,h) (3.6) p(z t xt ) = N(M t xt ; Σt,m ) (3.7), H t M t. Σt,h Σt,m white noise. 3.6, 3.7 Bayesian filter 3.4, 3.5, hypothesis generation hypothesis correction

3.3. 2 3.3 [36], 2 2,,. Yuan [36]. 3 3 reference plane. 3.3. i, i =, 2,... 3D P (x, y, z) 3 P i (x i, y i, z i ), 2 p i (u i, v i, ). 2 i, i + reference plane Π i,i+. i =, 2., P Π 2 p 2 p Homography H 2 p H 2 p 2. intensity P reference plane Π 2 planar pixels. residual pixels. process 3.5, Initial detection Homography based detection. residual pixels Parallax filtering, process Epipolar Structure consistency 2. Epipolar motion regions., Structure consistency reference plane Π 2 Parallax pixels, motion regions. Structure consistency 3 p, p 2, p 3 Π 2, Π 23. 3.3.2 P(x, y, z) i 3 P i R i, T i P. P i = R i P + T i (3.77), R = I, T = 0.

22 3 Original image Planar pixels Y Homography consistent? N Epipolar consistent? Y Structure consistent? Y Parallax pixels N N Initial detection (Homography based detection) Motion regions Parallax filtering 3.5: P i p i. p i = K i P i /z i (3.78), K i i. 3.3.3 P 2 p, p 2 (Fundamental matrix)f 2. p T 2 F 2 p = 0 (3.79). p 3.79.,, 3.79 P,., P C, C 2 3.6 P,.,,,, Structure consistency.

3.3. 23 P P P l l p p 2 p p 2 2 C C 2 3.6: P P C C 2 l l 2 d epi. d epi ( l p + l 2 p 2 )/2 (3.80), l l = F2p T 2, l 2 2 l 2 = F 2 p. l p p l, l 2 p 2 p 2 l 2. 3.3.4 Structure Consistency 3D reference plane Π : N P = d (3.8)., N = (N x, N y, N z ) T Π, d Π. Π P Π H. γ H = N P d (3.82) γ H/z (3.83). Π P 0. P 0 γ γ 0. γ γ 0. projective depth. γ/γ 0 = z 0 H H 0 z (3.84)