( ) ( ) ( ) ( ) PID
|
|
|
- いおり こけい
- 9 years ago
- Views:
Transcription
1 version 0.01 : 2004/04/ , 2, 5, 10,
2 ( ) ( ) ( ) ( ) PID PID PID PID *1 1.1 r y *1 p.465 2
3 1.2(b) r u y C P H D D C 3
4 D C D C (1.1) f(a 1, a 2, a 3, ) a 1 a 1 a 1 a 1 + a 1 a 1 f *2 f a 1 f a 1 S = f f a 1 a 1 (1.2) S 1 % % S 1 (1.2) a 1 0 S 0 = f f a 1 a 1 = (ln f) (ln a 1 ) (1.3) *2 1kg 4
5 (a) r + u y C P r C u y P 1+ PCH H (a) (b) 1.2 r y T T y r = P C 1 + P CH (1.4) P P + P T T 1.2(a) P T = 1 + (P + P )CH T P / S T T P = 1 P 1 + (P + P )CH 1 S 0 = 1 + P CH (1.5) (1.6) (1.7) * 3 *3 5
6 (1.7) S 0 PCH (1.6) T T = S P P (1.8) S 1 % % (a) 1.2(b) (a) (b) r y T (a) P P + P y B y B = P C {1 + (P + P )CH} (1 + P CH) r (1.9) (b) P P + P P y F y F = P C 1 + P CH r (1.10) (1.9) (1.10) (1.6) y B = S y F (1.11) S S < 1 6
7 PCH (1.7) S < d n d r + C u + P y + n H 1.3 (1.17) 7
8 1.3 L = P CH T ry y r = P C 1 + L T dy y d = P 1 + L T ny y n = L 1 + L S 0 (1.7) S 0 = L T dy = S 0 P (1.12) (1.13) (1.14) (1.15) (1.16) S 0 + T ny = 1 (1.17) (1.17) (1.13) T dy (1.16) S 0 (1.17) T ny T ny T dy 1.3 H H L (1.14) L (1.15) (1.16) H (1.17) H H (1.17) S 0 T ny (1.17) 8 S 0
9 1 S
10 (a) (b) (c) (a) (b) (c) A A A (a) 0 *4 *5 (b) *4 *5, p.79, 10
11 (a) 2.2 (2.1) (2.2) } d x(t) = Ax(t) + Bu(t) dt (2.1) y(t) = Cx(t) x(0) x(t) x(t) = ε At x(0) + t 0 ε A(t τ) Bu(τ)dτ (2.2) *6 (2.2) (2.1) ε At 2.3 (2.1) u(t) = 0 x(0) lim x(t) = 0 (2.3) t (1981) *6, p.63, (1981) 11
12 A Re {λ i (A)} < 0 ( i) (2.4) u(t) = 0 (2.2) *7 x(t) = ε At x(0) = T ε λ1t ε λ2t... ε λnt T 1 x(0) (2.5) T A (2.3) 3 x(0) t 0 3 t 0 (2.4) 2.4 A (2.1) 1 sx(s) x(0) = AX(s) + BU(s) *7, p.126, (1992.1), p.63, (1981) 12
13 X(s) x(0) = 0 (2.1) 2 Y (s) = C(sI A) 1 BU(s) U(s) Y (s) G(s) G(s) = C(sI A) 1 B = Cadj(sI A)B det(si A) (2.6) A =0 (2.6) 3 =0 det(si A) = 0 (2.7) s A A (2.4) 2.5 G(s) 1 1 G(s) = N(s) D(s) = β ns n + β n 1 s n 1 + β 1 s 1 + β 0 s n + α n 1 s n 1 + α 1 s 1 + α λ i z i 13
14 λ i G(s) ε λit z i ε z it { K1 Y (s) = G(s)U(s) = + K K } n U(s) s λ 1 s λ 2 s λ n U(s) = 1 y(t) = K 1 ε λ 1t + K 2 ε λ 2t + + K n ε λ nt u(t) = ε zit U(s) = 1 G(s) s z i Y (s) = N(s) D(s) 1 = s z i (s z i)ñ(s) D(s) 1 = Ñ(s) s z i D(s) ε zit 14
15 G(s) = N(s) D(s) -K Y (s) U(s) = N(s) D(s) + KN(s) (a) ω : 0 G(jω)H(jω) 2.2(b) (-1+0j) *8 1 + G(s)H(s) = 0 ω : 0 (-1+0j) ( 1 + 0j) k *8 pp (1997.9) 15
16 2.2(a) 0 A A A B B B (b) 180 ω 1, ω (a) B A 1 A 2 A 180 A (-1+0j)
17 (-1+0j) Im + A B G( jω ) H( jω ) ω 2-1 ω 1 Re (a) (b) 図
18 3.2 d x(t) = Ax(t) + Bu(t) dt y(t) = Cx(t) } (3.1) x(t) u(t) u(t) = F x(t) (3.2) (3.1) 1 (3.2) d x(t) = (A BF )x(t) (3.3) dt (A BF ) A * , 2, 5, 10,... 1, 2, 5, 10,... 1, 2, 5, 10,... *9, p , (1981) 18
19 2 1, 2, 4, 8, 16, 32, *10 1, 3, 10,... 1, 10, 100, /10 1/ bit 2 10 = 1024 A/D 0.1% 8bit A/D D/A 12bit =0.025% D. G. Luenberger *
20 1960 R. E. Kalman 4.2 d x(t) = Ax(t) + Bu(t) : A (n n), B(n m) (4.1) dt y(t) = Cx(t) : C(l n) (4.2) x(t) A, B, C u(t), y(t) (4.1) x(0) = x 0 (initial values) (4.3) x(t) = ε At x 0 + t 0 ε A(t τ) Bu(τ)dτ (4.4) x 0 x(t) x 0 20
21 4.3 y(t) x(t) (4.2) t (4.1) y(t) = Cx(t) ẏ(t) = Cẋ(t) = CAx(t) + CBu(t) ÿ(t) = CAẋ(t) + CB u(t) = CA 2 x(t) + CABu(t) + CB u(t). y (n 1) (t) = CA n 1 x(t) + CA n 2 x(t) + + CBu n 2 (t) Y (t) = Ox(t) + T U(t) (4.5) y(t) ẏ(t) Y (t) = ÿ(t). y (n 1) (t) O = C CA CA 2.. CA n 1 (4.6) (4.7) 21
22 U(t) = u(t) u(t) ü(t).. u (n 1) (t) CB T = CAB CB CA n 2 B CA n 3 B CB 0 (4.8) (4.9) x(t) (4.5) O T x(t) x(t) = (O T O) 1 O T (Y (t) T U(t)) (4.10) (O T O) 1 (4.7) O n l ranko = n (4.11) (4.10) x(t) x 0 (4.11) (4.1) (4.2) 0 t u(t) y(t) x 0 (4.6) 4.4 ( ) (4.1) (4.1) 22
23 4.1 u(t) x(t) (4.1) d dt ˆx(t) = ˆx(t) + ˆBu(t) (4.12) ˆx(0) = ˆx 0 (4.13)  = A ˆB = B (4.1) (4.12) ˆx(t) x(t) (4.13)  = A ˆB = B (4.12) (4.1) d (ˆx(t) x(t)) = A(ˆx(t) x(t)) (4.14) dt e(t) e(t) ˆx(t) x(t) (4.15) (4.14) d e(t) = Ae(t) (4.16) dt (4.16) e(t) = ε At e(0) (4.17) 23
24 (4.17) (4.15) x(t) = ˆx(t) ε At (ˆx(0) x(0)) (4.18) A t ε At 0 2 ˆx(t) x(t) A 4.1 K = 0 u(t) x(t) y(t) B + C A K + - Plant Observer Bɵ + x(t) ɵ Cɵ y(t) ɵ Aɵ ( ) u(t) y(t) y(t) 24
25 (4.12) y(t) ŷ(t) = C ˆx(t) d dt ˆx(t) = ˆx(t) + ˆBû(t) + K(y(t) C ˆx(t)) (4.19) 4.1  = A ˆB = B (4.19) (4.1) (4.2) (4.15) d e(t) = (A KC)e(t) (4.20) dt (4.16) K K A KC C, A A KC C, A 4.6 ( ) n m y(t) y(t) n m x(t) [ ] y(t) (m) thorder ˆx(t) = (4.21) ẑ(t) (n m) thorder (4.1) [ ] [ ] [ ] [ ] d y(t) A11 A = 12 y(t) B1 + u(t) (4.22) dt ẑ(t) A 21 A 22 ẑ(t) B 2 25
26 2 z(t) 1 dtẑ(t) d = A 22ẑ(t) + A 21 y(t) + B 2 u(t) estimation + K (ẏ(t) A 11 y(t) A 12 ẑ(t) B 1 u(t)) correction (4.23) ẏ(t) d dtẑ(t) = (A 22 KA 12 )ẑ(t)+(a 21 KA 11 )y(t)+(b 2 KB 1 )u(t)+kẏ(t) (4.24) 4.2 ẏ(t) K y(t) A21 KA11 +. z(t) ɵ + z(t) ɵ u(t) B2 KB1 A22 KA ( ) 26
27 (C, A, B) (Ĉ, Â, ˆB) (4.1) u(t) = F ˆx(t) + Gv(t) (4.25) (4.1) (4.19) d x(t) = Ax(t) + BF ˆx(t) + BGv(t) (4.26) dt d ˆx(t) = KCx(t) + (A KC)ˆx(t) + BF ˆx(t) + BGv(t) (4.27) dt (4.26) (4.15) ˆx(t) d x(t) = (A + BF )x(t) + BF e(t) + BGv(t) (4.28) dt (4.27) (4.26) (4.15) d e(t) = (A KC)e(t) (4.29) dt (4.28) (4.29) [ ] [ ] [ ] [ ] d x(t) A + BF BF x(t) BG = + v(t) (4.30) dt e(t) 0 A KC e(t) 0 A + BF A KC 27
28 A + BF (4.28) F A KC (4.29) K (C, A,B) (Ĉ, Â, ˆB) (4.30) PID LQ LQG 28
29 H PID PID 1922 *11 * H *13 PID 5.1 PID 84% * PID PID PID G C (s) 1 G C (s) = K P + K I s + K Ds = K P (1 + 1 T I s + T Ds) K I K P /T I, K D K P T D (5.1a) (5.1b) *11 PID p.7, 6 (1992.7) *12 *13 * pp , (1990) 29
30 (5.1a) 2 (Proportional) (Integral) (Differential) PID (5.1a) 2 (5.1a) 3 r + e 1 u y + K P + G P ( s) T I s d T s D GC ( s ) 5.1 PID (K P ) e (K I, K P /T I ) e 0 (K D, K P T D ) e e u : u(s) = K P (1 + 1 T I s + T Ds)e(s) (5.2) u e : e(s) r(s) y(s) = r(s) G P (s)u(s) (5.3) (5.2) (5.3) 3 e(s) (5.2) 2 e(s) u(s) (5.3) e(s) (5.2) e(s) 0 e(s) 30
31 (5.2) 3 u(s) u(s) (5.3) 3 e(s) PID P PI PID 3 * G P (s) G P (s) = ε Ds 1 (1 + T 1 s)(1 + T 2 s) T 2 /D (5.4) T 1 =T 2 つまり 二 重 根 の 付 近 4 PID 5 PD I PI P T 1 /D 定 常 偏 差 をと 取 る くらいしかできない D が 小 さいので,ゲイン を 大 きくしても 大 丈 夫 5.2 PID *15, p.149, (1976), p.131, (1997) 31
32 5.3 PID PID *16 Ziegler Nichols P T I T D 0 K P K P K C T C K P T I T D P 0.5K C PI 0.45K C 0.83T C PID 0.6K C 0.5T C 0.125T C K P *16 PID 2 (1992), pp , (1997) 32
33 5.3 R L 5.2 y 1 R 0 L t K P T I T D P 1/RL PI 0.9/RL 3.33L PID 1.2/RL 2L 0.5L 25% 33
34 5.4 PID 5.1 PID D P D PD D PID PI-D PD PID I-PD D PD 2 PID PID PID 34
p06.dvi
I 6 : 1 (1) u(t) y(t) : n m a n i y (i) = b m i u (i) i=0 i=0 t, y (i) y i (u )., a 0 0, b 0 0. : 2 (2), Laplace, (a 0 s n +a 1 s n 1 + +a n )Y(s) = (b 0 s m + b 1 s m 1 + +b m )U(s),, Y(s) U(s) = b 0s
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink
曲面のパラメタ表示と接線ベクトル
L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =
[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt
3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]
genron-3
" ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /
213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
,, 2. Matlab Simulink 2018 PC Matlab Scilab 2
(2018 ) ( -1) TA Email : [email protected], [email protected] : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0
1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
K E N Z OU
K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................
DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118
7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
08-Note2-web
r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u
( ) LPV( ) 1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u m 1 m m 2, b 1 b b 2, k 1 k k 2 (2) [m b k ( ) k 0 b m ( ) 2 ẋ = Ax, x(0) 0 (3) (x(t) 0) ( ) V (x) V (x) = x T P x >
23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................
II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1
II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
1 P2 P P3P4 P5P8 P9P10 P11 P12
1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520
診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
II 1 II 2012 II Gauss-Bonnet II
II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................
m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2
3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1
arma dvi
ARMA 007/05/0 Rev.0 007/05/ Rev.0 007/07/7 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 : : : :
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
IA [email protected] Last updated: January,......................................................................................................................................................................................
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
150MHz 28 5 31 260MHz 24 25 28 5 31 24 28 5 31 1.... 1 1.1... 1 1.2... 1 1.3... 1 2.... 2 2.1... 2 2.2... 3 2.3... 7 2.4... 9 2.5... 11 3.... 12 3.1... 12 3.2... 13 3.3... 16 3.4... 24 4.... 32 4.1...
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
(4.15a) Hurwitz (4.15a) {a j } (s ) {a j } n n Hurwitz a n 1 a n 3 a n 5 a n a n 2 a n 4 a n 1 a n 3 H = a n a n 2. (4.16)..... a Hurwitz H i H i i H
6 ( ) 218 1 28 4.2.6 4.1 u(t) w(t) K w(t) = Ku(t τ) (4.1) τ Ξ(iω) = exp[ α(ω) iβ(ω)] (4.11) (4.1) exp[ α(ω) iβ(ω)] = K exp( iωτ) (4.12) α(ω) = ln(k), β(ω) = ωτ (4.13) dϕ/dω f T 4.3 ( ) OP-amp Nyquist Hurwitz
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
N88 BASIC 0.3 C: My Documents 0.6: 0.3: (R) (G) : enterreturn : (F) BA- SIC.bas 0.8: (V) 0.9: 0.5:
BASIC 20 4 10 0 N88 Basic 1 0.0 N88 Basic..................................... 1 0.1............................................... 3 1 4 2 5 3 6 4 7 5 10 6 13 7 14 0 N88 Basic 0.0 N88 Basic 0.1: N88Basic
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
,255 7, ,355 4,452 3,420 3,736 8,206 4, , ,992 6, ,646 4,
30 8 IT 28 1,260 3 1 11. 1101. 1102. 1103. 1 3 1,368.3 3 1,109.8 p.5,p.7 2 9,646 4,291 14.5% 10,p.11 3 3,521 8 p.13 45-49 40-44 50-54 019 5 3 1 2,891 3 6 1 3 95 1 1101 1102 1103 1101 1102 1103 1 6,255
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
? FPGA FPGA FPGA : : : ? ( ) (FFT) ( ) (Localization) ? : 0. 1 2 3 0. 4 5 6 7 3 8 6 1 5 4 9 2 0. 0 5 6 0 8 8 ( ) ? : LU Ax = b LU : Ax = 211 410 221 x 1 x 2 x 3 = 1 0 0 21 1 2 1 0 0 1 2 x = LUx = b 1 31
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)
4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7
3
00D8103005L 004 3 3 1... 1....1.......4..1...4.....5 3... 7 3.1...7 3....8 3.3...9 3.3.1...9 3.3.... 11 3.4...13 3.4.1...13 3.4....17 4... 4.1 NEEDS Financial QUEST... 4....5 4.3...30 4.4...31 4.5...34
KENZOU
KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語
A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE
() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y
5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b
23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b
ohp_06nov_tohoku.dvi
2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
136 pp p µl µl µl
135 2006 PCB C 12 H 10-n Cl n n 1 10 CAS No. 42 PCB: 53469-21-9, 54 PCB: 11097-69-1 0.01 mg/m 3 PCB PCB 25 µg/l 136 pp p µl µl µl 137 1 γ 138 1 γ γ γ µl µl µl µl µl µl µl l µl µl µl µl µl l 139 µl µl µl
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
DE-resume
- 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2
ネットワークコミュニティによる地域再生
14 2003 9 1 11 70 60 50 40 30 20 10 500 400 300 200 100 0 0 1980 82 84 86 88 90 92 94 96 98 2000 2 5,000 4,000 3,000 2,000 1,856 1,000 2.6 4,157 2.1 0 0 1983 84 86 88 90 92 94 96 98 2000 02 5.4 843 700
boost_sine1_iter4.eps
3 (, 3D ) 2. 2 3.. 3D 3D....,,. a + b = f, a, f. b a (.) b a.: b f (.2), b f., f.2. 2 Y y Q(X,Y,Z) O f o q(x,y) Z X x image plane.2:.2, O, z,. O..2 (X, Y, Z) 3D Q..2 O f, x, y X, Y. Q OQ q, q (x, y). x
