1
1 5% [1]2011 [2] [3][4] [5] [6] [7-8] 2 3 4 2
5 BDF 9000 kl [9] [7-8, 10-11] 50 m 3 30 m 3 -working vol. 3.5 m 3 -week 5 75L glycerol/plant-day 30 L glycerol/plant-day (1 ml/l-day)fig. 1 106% 70 85% 0 Fig. 2 12.5 km BOD T-N: 3
0.11%, P 2 O 5 : 0.036%, K 2 O: 0.19% 6 3, 3;1.67kg/a, ;0.62kg/a, ;1.24kg/a1 (1a)2 m 3 1.2 K 2 O Table 1 3 4 3010 20 J 10 [12] Ceriporiopsis subvermispora [13] 30 60 HRT 24 HRT3060 Clostridium sp. TCW1 3 [14] 6 24 4
37 74.7%, 52.3%, 50.0% 20 6 2.6 73.4% Fig. 3 6 3 6 6 4 37 6 24 VFA 35 32 1.6! Fig. 4 6 5
!-24!- CO 2!- 24 24 6 80-90% 6 2 5 2 () 50m 3 (30m 3 -working vol.) 30 L/Table 2 91.3 kg/table 3 6
120 kg/ Table 3 4.0% (w/v) 84 kg / 2.8 %(w/v) 2 [1] International Energy Agency (IEA), Energy Balances of OECD Countries 2010 Edition [2], 22 12 [3], 1999.. 36 413-421 [4],, 1972. I :. 21, 79-83. [5] Tokuda, M., Fujiwara, Y., Kida, K., 1999. Pilot plant test for removal of organic matter, N and P from whisky pot ale. Process Biochemistry 35. 267-275. [6] Macedoa, I.C., Seabrab, J.E.A., Silvac, J.E.A.R., 2008. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 7
averages and a prediction for 2020. Biomass and Bioenergy 32. 582-595. [7] Siles López, J.Á., Martín Santos, M.A., Chica Pérez, A.F., Martín Martín, A., 2009. Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour. Technol. 100, 5609 5615. [8] Castrillón, L., Fernández-Nava, Y., Ormaechea, P., Marañón, E., 2011. Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour. Technol. 102, 7845 7849. [9]. 22 [10] Astals, S., Nolla-Ardèvol, V., Mata-Alvarez, J., 2012. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour. Technol. 110, 63 70. [11] Siles, J.A., Martín, M.A., Chica, A.F., Martín, A., 2010. Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour. Technol. 101, 6315 6321. [12], 2001. 21.., 3-10. [13] Amirta, R., Tanabe, T., Watanabe, T., Honda, Y., Kuwahara, M., Watanabe, T., 2006. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J. Biotechnol. 123, 71 77. [14] Lo, YC., Huang, CY., Cheng, CL., Lin, CY., Chang, JS., 2011. Characterization of cellulolytic enzymes and bioh2 production from anaerobic thermophilic Clostridium sp. TCW1. Bioresour. Technol. 102, 8384 8392. 8
!"#$%#$&'(')*+, D$$2$* I<@8B)*J(1(<9@* *K!L&)@(8M* #$$2$* +$$2$*,$$2$* $2$* 3,$$2$* 3+$$2$* 3#$$2$*!-(%#$&'(')*+,./0(1H*,#2#*./0(1H*34$2-* Fig. 1 Energy balance per crude glycerol load../0(1h*3,-#24*./0(1h*3,4,25*!"#$%&'()*!"+$%&'()*!",$%&'()*!"-%&'()*./0(1*,#2#* 34$2-* 3,-#24* 3,4,25* 6789:1(;/<*=:>=* 3,2+* 3,2+* 3,2+* 3,2+*?/71@8* 3$2-* 3$2-* 3$2-* 3$2-* A@(;<B*/71* 3,CC2D* 3,CC2D* 3,CC2D* 3,CC2D* E;887<B* 3DC2C* 3DC2C* 3DC2C* 3DC2C* F@0G(<@* +-+2,*,DC2D* C-2$* D52,* " # Input and output energy (MJ) 35000 30000 25000 20000 15000 10000 5000 Average temperature ( ) 0 25 20 15 10 5 0 9:*3./";6#%,.<,% =6:/'*% >'";#0%6:/% 1;**:#0%?*6@.3;7'%'#'*0-%A)'4B"#'%0"CD%%!"#$% &'($% )"*$% +,*$% )"-%!.#%!./$% +.0$% 1',$% 234$% 567$% 8'3$%! Fig. 2. Energy balance (A) and average temperature (B) per month. Electric power, heating oil, and methane gas were converted to thermal units (electric power, 3.6 MJ/kwh; heating oil, 36.7 MJ/L; methane gas, 37.2 MJ/m 3 ). Asterisk (*): Energy of the methane produced at a loading rate of 30 L glycerol/30 m 3 -day. -5!"#$% &'($% )"*$% +,*$% )"-%!.#%!./$% +.0$% 1',$% 234$% 567$% 8'3$% 9
! Fig. 3. Time course of methane production and soluble nitrogen over 20 days of methane production process with rumen fluid-treated and untreated " waste paper. Symbols: () 6-h treated, () 24-h treated, () control * * (untreated with rumen fluid). Asterisk (*): (NH 4 ) 2 CO 3 was added to the control at 7 (additive amount: 700 mg/l) and 13 (additive amount: 300 mg/l) days. <",.=0$'"" 8'""00 @,"" 4*).*. >'7*$'""#"%&' 8'""#"%&'07*$;%?9;*"& 14%.)($5,*.0$'""#"%&'3 -.+%)"#$,.,&' 16'+*#7($5,*.0$'""#"%&'3 -/%)"#$,.,&'0120'.+%)"#$,.,&'3 18'""%9*%&':0$'""%(%"*)%&,$$5,;*+'30 ()"#$%&*+,&'!"#$%&' 6*$;%9' A*%),&018> B :08C D 3 Fig. 4. Model of cellulose hydrolysis by cellulolytic enzymes. 10
Table 1 Grass yields and components with and without fertilization. Without fertilization With Fertilization Grass yield (kg-dry/a) 17.7 ± 0.7 21.0 ± 1.3 Grass component T-N (%) 3.2 ± 0.3 3.5 ± 0.7 P 2 O 5 (%) 1.4 ± 0.1 1.5 ± 0.1 K 2 O (%) 5.2 ± 0.2 9.8 ± 2.0 Table 2 GJ/ * * 5 L/ -29.8-193.5 10 L/ -32.4-155.7 20 L/ -38.8-92.4 30 L/ -44.0 11.4 * Table 3 CO 2 kg/% w-/v- 91.3 (3.04) 111.4 (3.71) CO 2 86.2 (2.87) 120.0 (4.00) 11