J. Mass Spectrom. Soc. Jpn.: 58(5), (2010)

Similar documents

untitled

X線分析の進歩36 別刷

PowerPoint プレゼンテーション

From Evans Application Notes

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

2

86 MS MS GC LC GC LC Fig. 1.MS 3. 質 量 分 析 計 の 構 成 1 試 料 導 入 部 2イオン 化 部 3イオン 分 離 部 4イオン 検 出 部 5データ 処 理 部 Pa Fig. 2.

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

untitled

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

Dynamic SIMS Static SIMS µ µ

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

X線分析の進歩45

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

* * 2

06’ÓŠ¹/ŒØŒì

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

ステンレス鋼用高性能冷間鍛造油の開発

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

untitled

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

Microsoft Excelを用いた分子軌道の描画の実習

03J_sources.key

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

04-“²†XŒØ‘�“_-6.01

メンテナンスフリーのセンサーを実現するエネルギー・ハーベスティング技術

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

„´™Ÿ/’£flö

<95DB8C9288E397C389C88A E696E6462>

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

Core Ethics Vol. : - : : : -

untitled

) ,

スライド 1


スライド 1

NINJAL Project Review Vol.3 No.3

Transcription:

J. Mass Spectrom. Soc. Jpn. Vol. 58, No. 5, 2010 REVIEW 9 Secondary Ion Mass Spectrometry (SIMS) SIMS SIMS Fundamentals of Mass Spectrometry Secondary Ion Mass Spectrometry (SIMS), Cluster SIMS, and Electrospray Droplet Impact SIMS Kenzo H>G6D@6 Kofu, YAMANASHI, JAPAN Clean Energy Research Center, University of Yamanashi, The use of secondary ion mass spectrometry (SIMS) to characterize inorganic, organic and biological materials has undergone significant and multiple advances in the past thirty years. Additional development in cluster ion sources that started in the early 1990s laid the ground work for the significant increase in SIMS investigations in material science. The continuing scaling trend leads to a drastic reduction in film thicknesses which increases the demands for very high depth resolution, ideally a multilayer system with the depth resolution in the order of 0.5 nm. Recently, the electrospray droplet impact (EDI) has been developed that uses the atmospheric pressure electrospray as a cluster ion source. EDI/SIMS is very high-sensitive and EDI is capable of very shallow surface etching without the damage left on the etched surface. In this chapter, the fundamentals and applications of EDI to the surface analysis are dealt with. (Received March 22, 2010; Accepted March 22, 2010) 1. (energy sudden) MALDI (matrix-assisted laser desorption ionization) FAB/ SIMS (fast atom bombardment/secondary ion mass spectrometry) SIMS 10 kev (cascade collision) Correspondence to: Kenzo H>G6D@6, Clean Energy Research Center, University of Yamanashi, Takeda 4 3 11, Kofu, Yamanashi 400 8511, JAPAN, e-mail: hiraoka@yamanashi. ac.jp 400 8511 4 3 11 SIMS SIMS SIMS 1) Fig. 1 15 kev Ga C 60 Ag 111 1) Ga (interlayer mixing) C 60 Ga C 60 175

K. Hiraoka Fig. 1. Ag 111 Ga C 60 1 2004, American Chemical Society. SIMS SIMS (Ar n ) Ar n (gas cluster ion beam: GCIB) 2) GCIB 2 3 2) GCIB (SIMS) 2) SIMS 3) 9) 2. /SIMS Fig. 2 /SIMS Fig. 2. EDI/SIMS SIMS electrospray droplet impact/sims EDI/SIMS 3) 9) Fig. 2 EDI XeFAB EDI 5mm Fig. 2 400 mm (heat bath) ms 50 20 176

SIMS SIMS SIMS Fig. 3. Rayleigh 5 2006, Wiley InterScience Fig. 2 m/z 10 4 5 10 4 Rayleigh 8 Rayleigh Rayleigh N (ge 0 R 3 ) 0.5 8p/e (1) g e 0 R m/z 10 4 5 10 4 m N (Fig. 3) 5) R 3 ((4/3)pR 3 ) Fig. 3 Rayleigh (u) N Rayleigh Rayleigh R 3 m 2 N 2 Fig. 3 m (m an 2 ) / ESI nanoesi ProbeElectrospray: 8 (FD) FD 8 Fig. 3 m/z 10 4 5 10 4 2 Rayleigh m 100 u 1,500 u N 60 300 Fig. 2 10 kv 1 na 2mm 2 10 9 cm 2 s 1 [(H 2 O) 90,000 100H] 100 Fig. 3 5) 10 nm 100 10 kv 10 6 ev u 12 km/s 5 3. Fig. 4 9 12 km/s 10 AÕ 10 13 (ps) EDI/SIMS ps MALDI ns ns ms EDI ps EDI MALDI EDI 177

K. Hiraoka Fig. 4. Fig. 5. 1 M 5 2006, Wiley InterScience. EDI EDI 4. Fig. 2 10 nm 100 ev 1M EDI (Fig. 5) 5) H (H 2 O) n m/z 3,000 10 nm 100 ev 1 EDI MALDI EDI 5. EDI 178

SIMS SIMS SIMS Fig. 6. 100 10 C 60 EDI 4) Fig. 7. 10 S 100 c EDI 4 2006, Wiley InterScience. Fig. 6 100 10 C 60 EDI C 60 C 60 C 60 (2) C 60 C 60 C 60 C 60 (2) EDI Fig. 7 10 S 100 c EDI S [M H] 10 30 1 c m/z 10,000 EDI 12 km/s 1 10 (useful yield) H 2 O H 2 O H 3 O OH M H 3 O M H 2 O [M H] OH M H 2 O [M H] MALDI 179

K. Hiraoka Fig. 8 EDI MALDI EDI MALDI MALDI PE (phosphatidylethanolamine) PS (phosphatidylserine) EDI PI (phosphatidylinositol) ST (sulfatide) EDI Fig. 8. EDI MALDI 3 2006, Springer- Verlag. OH PE PS EDI MALDI 10 MALDI 6. EDI 1 FK506 Fig. 9 Fig. 9(a) FK506 EDI EDI (b), (c) (d) Fig. 2 Xe FAB XeFAB (5 kev) FAB (b) (c) 10 Xe (d) 20 XeFAB 20 XeFAB FK506 (e) (a) FAB EDI EDI Fig. 10 Au S (CH 2 ) 6 NH 2 EDI 9) H S (CH 2 ) 6 NH 2 Fig. 9. 1 FK506 (a) EDI (b) XeFAB (5 kev) FAB (c) 10 XeFAB (5 kev) FAB (d) 20 XeFAB (5 kev) FAB (e) 20 XeFAB EDI 3) 3 2006, Springer-Verlag. 180

SIMS SIMS SIMS Fig. 10. Au S (CH 2 ) 6 NH 2 0 15 EDI [M H] [2M H] [M H Au] Au Fig. 11. PET 0.1 mm EDI (a) (b) 60 [(CH 3 COOH) 2 H] (m/z 121) [(CH 3 COOH) 3 H] (m/z 181) 181

K. Hiraoka Au Au EDI Fig. 11 0.1 mm (PET) EDI (a) (b) 60 PET (a) (b) EDI 60 PET EDI 60 PET 4 1 Fig. 12. (a) PET (0.1 mm) EDI XPS O1s (b) PET (0.1 mm) EDI XPS C1s (c) PET (0.1 mm) 1keV Ar XPS O1s Ar (d) PET (0.1 mm) 1 kev Ar XPS O1s Ar BE: (binding energy) (ev) EDI Ar PET 70 nm 120 10 nm 8.3 182

SIMS SIMS SIMS X (X-ray photoelectron spectroscopy: XPS) EDI/SIMS XPS Fig. 12(a) (b) EDI PET O1s C1s 120 PET Ar PET Ar XPS Ar 1keV Fig. 12(c), (d) Ar O1s COO CO C1s Ar PET CC C1s Ar PET (Fig. 10) (Fig. 12(a), (b)) 120 PET (atomic force microscopy) 2nm 120 16 nm (ripple) 30 10), 11) EDI EDI Fig. 10 15 EDI Au Au n EDI Fig. 13 3keV Ar (InP) (AFM) 0.8 nm 3 kev Ar 60 SiO 2 60 nm 16.7 nm 1 Fig. 13(b) Ar In SiO 2 42 nm EDI 1.2 nm XPS Ar (b) InP P In (In/P 1.7) EDI (c) InP In/P 1 EDI InP In P 7 SIMS SIMS useful yield: 0.01 EDI EDI 100 ev Fig. 13. InP AFM (2 2 mm 2 ) (a) EDI (b) 3 kev Ar 30 SiO 2 60 nm (c) EDI 240 SiO 2 48 nm 183

K. Hiraoka H 2 O H 2 O H 2 O 3 2 EDI EDI/SIMS 1. 2. MeV 3. EDI 4. EDI self-cleaning 5. EDI 6) 6. EDI SIMS EDI/SIMS XPS, AES (Auger electron spectroscopy), SPM (Scanning probe microscopy) 1) Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd, and B. J. Garrison, J. Phys. Chem. B, 108, 7831 (2004). 2) (2006). 3) K. Hiraoka, D. Asakawa, S. Fujimaki, A. Takamizawa, and K. Mori, Eur. Phys. J. D, 38, 225 (2006). 4) K. Hiraoka, K. Mori, and D. Asakawa, J. Mass Spectrom., 41, 894 (2006). 5) K. Mori, D. Asakawa, J. Sunner, and K. Hiraoka, Rapid Commun. Mass Spectrom., 20, 2596 (2006). 6) D. Asakawa, S. Fujimaki, Y. Hashimoto, K. Mori, and K. Hiraoka, Rapid Commun. Mass Spectrom., 21, 1579 (2007). 7) I. Kudaka, D. Asakawa, K. Mori, and K. Hiraoka, J. Mass Spectrom., 43, 436 (2008). 8) K. Mori and K. Hiraoka, Int. J. Mass Spectrom., 269, 95 (2008). 9) D. Asakawa, K. Mori, and K. Hiraoka, Appl. Surf. Sci., 255, 1217 (2008). 10) Y. Homma, A. Takano, and Y. Higashi, Appl. Surf. Sci., 203 204, 35 (2003). 11) T. K. Chini, F. Okuyama, M. Tanemura, and K. Nordland, Phys. Rev. B, 67, 205403 (2003). Keywords: SIMS, Cluster SIMS, Electrospray droplet impact, Supersonic collision, Shock wave 184