????? 1

Similar documents
薄板プレス成形の高精度変形解析手法と割れ予測

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

電子部品はんだ接合部の熱疲労寿命解析

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

JFE.dvi

untitled

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na

J. Jpn. Inst. Light Met. 65(6): (2015)

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

untitled

n-jas09.dvi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)


Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals

7章 構造物の応答値の算定

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

R927清水信彦様.indd

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

untitled

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

特-7.indd

技術研究報告第26号

untitled

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Plasticity-Induced Martensitic Transformation in Austenitic Stainless Steels SUS 304 and SUS 316 L at Room and Liquid Nitrogen Temperatures (Quantitat

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

卒業論文

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

土木学会構造工学論文集(2011.3)

パナソニック技報

untitled

力学的性質

) BPA ECN EPICLON N-600 Fig.2 Fig Fig.4 DCPD EPICLON HP-7200 ECN Fig.5 DCPD ECN DCPD 6-28) Table 1 BPA Fig.4 Chemical str

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Study on Fracture Strength Assessment (The 1st Report) Comparison of JWES approach and R6 approach by Susumu Machida, Member Yukito Hagiwara, Member H

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

S-5.indd


T05_Nd-Fe-B磁石.indd

撮 影

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

.I.v e pmd

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed


Table 1 Properties of Shrink Films on Market Fig. 2 Comparison of Shrinkage curves of PS and PET films. Fig. 3 Schematic diagram of "Variations in bot


206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

日立金属技報 Vol.34

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

車両開発における構造・機構のCAE

note1.dvi

S-6.indd

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

鉄鋼協会プレゼン

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

空力騒音シミュレータの開発

29 Short-time prediction of time series data for binary option trade

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

2 ( ) i

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208

修士論文

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

.N..

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

新しい価値創出に貢献する大規模CAEシミュレーション

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Fig.2 Optical-microscope image of the Y face-cross sec- tion of the bulk domain structure of a 0.4-mm-thick MgO-LiNbO3 crystal after chemical etching.

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

Transcription:

Application of Plastics CAE: Focusing on Impact Analysis Sumitomo Chemical Co., Ltd. Plastics Technical Center Masaaki TSUTSUBUCHI Tomoo HIROTA Yasuhito NIWA Tai SHIMASAKI To review recent topics on impact analysis in the field of plastics, this report outlines the application trends and analysis techniques followed by an explanation of the characteristic physical properties of resins which may be the key points for their practical application. First we introduce how we predict yield stress under a wide range of temperatures and strain rates. Second, for the elastic-plastic model, we explain that it may be appropriate to consider dependence of yield stress on stress state and volume increase due to craze generation. Finally, we show how fracture behavior depends on temperature and strain rate. CAE Computer Aided Engineering ) 98Dr. Jason R. Lemon CAE 2) CAE CAE CAE CAE 98 CAE 3) 6) 7), 8) 9) Fig. a Fig. b CAE 2 CAO Computer Aided OptimizationCAO CAE 2) CAO CAE ) CAE CAE Fig. 2 2-

Fig. (a) Semi-anechoic chamber (b) Impact testing machine Experimental facilities for Plastics CAE Plastics CAE (Product/Material design and product performance evaluation) < CAE for Polymer Design > Structure & Composition of Materials Fig. 2 CAE CAO Physical properties of Materials * CAE : Computer Aided Engineering CAO : Computer Aided Optimization Plastics CAE system < CAE for Product Design > CAE CAO Performance & Processability of Products ) 6) 7) 8), 9) 2) 23) 24), 25) 4 9 26) 27) 29) 3) 3) 32), 33) 34) LS-DYNA LS-DYNA 976 DYNA3D 987 2-

Courant Courant u Δt C = Δx C CourantuΔ t Δx u ρe u = E/ρ 2 Δt Δx ρ/e () (2) E =.5GPa ρ = 9kg/m 3 Δx =.m Δ t.77 Δt Courant 35) LS-DYNA 2 Δ x Courant 3 Fluid Structure Interaction: FSI Lagrange Lagrange Euler ALE Arbitrary Lagrangian Eulerian ALE 2-

Euler ALE Lagrange 3 36) n σ 2 ε. =, σ ε. 2 ε 2 ε. = ε ε. 2 n (3) σ σ 2 ε ε 2 ε ε 2 n Stress (MPa) 5 5 Strain (a) Original data Stress (MPa) 5 4 3 2 4 3 2 (b) Superposed data by the scaling rule Fig. 3 2 4 Strain.5s.s.2s.5s s 2s 5s s 2s 5s s 2s 5s.5s s 2s 5s s 2s 5s s 2s 5s Tensile testing results: Relationship between nominal stress and nominal strain 3 Fig. 3.5s 3 4 37) σθεε E w h σ(ε,ε.,θ) = E (ε.,θ) [ e w(ε.,θ)ε ]e h(ε.,θ)ε 2 w(ε.,θ) 4 Fig. 3 Fig. 3 a E w h 4 2 38) Cowper-Symonds 5 σ y = σ y [ + (ε. /C ) /p ] σ y σ y ε C p (4) (5) 2-

Eyring 6 39) Eyring Eyring V p *σ y V p *σ y 6 PC, PMMA, PP R σ y = Σ sinh T p=α,β V ε.* p *,p ε. *,p = ε.,p exp ΔU p RT σ y ε ε,p TRV p * ΔU p ε. (6) 6 Fig. 4 Fig. 4 6 Yield Stress (MPa) 8 6 4 2 4 C 3 C 2 C C C C 23 C {(σ xx σ yy ) 2 +(σ yy σ zz ) 2 +(σ zz σ xx ) 2 +6(τ 2 xy + τ 2 yz + τ 2 zx)} σ 2 y 2 (7) σ y σ xx σ yy σ zz τ xy τ yz τ zx 4) von Mises 25) : ε L : ε T Fig. 5 d ε T /d ε L, Fig. 5 Digital Image Correlation Method; DICM 4) Fig. 5 42) Fig. 4.. Strain Rate (s ) Plots: Experimental data Curves: Eq.6 Dependence of yield nominal stress on temperature and nominal strain rate von Mises 7 von Mises Transverse true strain Parallel part length of the specimen: 57mm Fig. 5..5..5.2 Slope:.42.2mm/s.m/s.25..5. Longitudinal true strain Relationship between transverse true strain and longitudinal true strain 2-

43) ε pt ε pl ε pt /ε pl.5 Fig. 6 F S S S v σ d σ p 8 F = σ d S = σ p (S S v ) d ΔV V 9 44) d = σ d /σ p = (S S v )/S = /( + ΔV/V ) Tensile Direction F = σ d S = σ p (S S v ) S (8) (9) 3 Fig. 7 A D Table Strain at break A B C D Fig. 7 Table Region C D Break under uniform deformation (A) Break immediately after start of necking (B) Break under propagation of necking (C) Break at the shoulder part of the specimen (D) B Break behavior of the specimen at tensile testing Break behavior Break under uniform deformation Break immediately after start of necking Break under propagation of necking Break at the shoulder part of the specimen C... Strain rate (s ) Relationship between nominal strain at break and nominal strain rate Temperature Low High Nominal strain rate High Low A Fig. 8 a T WLF 45) A B A 23 C 3 C S v C log a T = (T T ref ) C2 + (T T ref ) () Fig. 6 Stress of damaged material Cross-section TTref C C 2 2-

Strain at break 4 C 3 C 2 C C C C 23 C log at 5 Exp. 5 5 5 Temperature ( C) 99 Fig. 9.. Strain rate (s ) Plastics part Fig. 8 Results of time-temperature superposition in region A 23.2 Fig. 7 46) 99 CAE Acceleration (m/s 2 ) 2 Fig. 9 Time (s) Free Motion Headform Analysis (CAO) Analysis (Manual) Experiment Example of simulation of impact test for rib box parts CAO Response Surface Method Modified Method of Feasible Directions 47) CAO. 2-

48) 2 Fig. Yield Stress (MPa) 7 6 5 4 3 2. Strain rate (s ) (a) Dependence of nominal yield stress on nominal strain rate Strain at break 3 2.8.6 35 C 4 C 45 C 35 C 4 C 45 C.4 Strain rate (s ) Predicted unstable or unmeasurable condition for tensile test (b) Dependence of nominal strain at break on nominal strain rate Fig. Determination of failure characteristics Fig. Example of drop impact analysis for the standing-pouch A Table A 6 Fig. a Fig. b 35 Fig. 2 Blown off door (a) with poor material properties Fig. 2 Properly opened door (b) with good material properties Airbag cover deployment test analysis result 2-

3 Fig 3 Model A von Mises.5 Model B Fig. 4 Model B Model A Upper clamp Lower clamp Fig. 3 Force (N) 4 3 2 Fig. 4 2.7mm 5mm Dart with hemispherical tip weight: 6.5kg Plate specimen 3mm Schematic diagram of CAE analysis model for the falling weight impact test Drop height : 4cm 5 5 2 25 Displacement (mm) Exp. CAE (Model A) CAE (Model B) Comparison of experimental result and CAE predictions for the falling weight impact test 49) 5) Gough-Joule 5) 52), 53) XFEM 54) 55) CAE CAECAE ) J. R. Lemon, S. K. Tolani and A. L. Klosterman, CAD-Fachgespräch, 98, 6 (98). 2),,,, 24- @, 5 (24). 3),,,,,, 984-@, 7 (984). 4),,,,,, 992-@, 68 (992). 5),,,,,, 995-!, 75 (995). 6),,,, 2-@, 3 (2). 7) M. Tsutsubuchi, T. Kitayama, Y. Togawa, T. Nishio and, H. Kutschera, Intern. Polym. Process., 5(3), 33 (2). 8),,, 98, 998, 39. 9),,,, 29-!, 4 (29). 2-

),, 22(), 53 (2). ) M. Walter, H. Chladek and A. Huß, 4th European LS-DYNA Users Conference, 23, G--5. 2) I. Lupea, J. Comier and S. Shah, 8th International LS-DYNA Users Conference, 24, 5-57. 3) T. Yeo and J. Park, 23 ABAQUS Users Conference, 23. 4) T. Goel and N. Stander, Comput. Methods Appl. Mech. Engrg., 98, 237 (29). 5) M. Keranen, S. Krishnaraj, K. Kulkarni, L. Lu, R. Thyagarajan and V. Ganesan, SAE Technical Paper, 25--22 (25). 6) C. J. Ribeiro, J.C. Viana, F.Vilaça and J. Azenha, Plastics, Rubber and Composites, 35, 253 (26). 7) A. Malladi, Saifuddin and G. Gadekar, SAE Technical Paper, 2-26-4 (2). 8),,,,,, No.99-98, 9 (998). 9),,, No.3-99, 3 (999). 2),,,,,, 26, 27. 2),, 32, 5 (26). 22) J. M. Lorenzo, SAE Technical Paper, 999--433 (999). 23) K. Lee, T. Yeo, S. Park, H. A. Gese and H. Dell, SAE Technical Paper, 28--6 (28). 24) P.A. Du Bois, M. Koesesters, T. Frank and S. Kolling, 3. LS-DYNA Anwenderforum, 24, C-I-. 25) P.A. Du Bois, S. Kolling, M. Koesters and T. Frank, International Journal of Impact Engineering, 32, 725 (26). 26) M. C. H. Lee and G. E. Novak, SAE Technical Paper, 26--87 (26). 27),,,,,,, 2, 525. 28) D. Yu, J. B. Kwak, S. Park and J. Lee, Microelectronics Reliability, 5, 28 (2). 29) K. H. Low, A. Yang, K.H. Hoon, X. Zhang, J. K. T. Lim and K. L. Lim, Advances in Engineering Software, 32, 683 (2). 3) T. Allen, J. Hart, J. Spurr, S. Haake and S. Goodwill, Procedia Engineering, 2, 3275 (2). 3) A. W. Pugh, R. Hamilton, D. H. Nash and S. R. Otto, Procedia Engineering, 2, 323 (2). 32),,, C, 76(772), 3343 (2). 33) W. Petersen and J. McPhee, Sports Eng., 2(2), 77 (2). 34), C, 65(638), 389 (999). 35),,, 25(4), 34 (26). 36),,,, (995), p. 72. 37) W. Michaeli, M. Glißmann, Polymer Testing, 2(5), 59. 38),, 57(3), 29 (28). 39) E.T.J. Klompen, L.E. Govaert, Mech. Time-depend. Mater., 3, 49 (999). 4),, 5(9), 968 (2). 4) F. Grytten, H. Daiyan, M. Polanco-Loria and S. Dumoulin, Polymer Testing, 28(6), 653 (29). 42) V. Delhaye, A. H. Clausen, F. Moussy, R.Othman and O.S.Hopperstad, International Journal of Impact Engineering, 38(4), 28 (2). 43),, 5, 25, 89. 44) M. Nutini and M. Vitali, 7. LS-DYNA Anwenderforum, 28, D-I-. 45),,, 5(6), 25 (22). 46),,,, 26, 39. 47),,,,, 2, 35. 48),,,, 6, 26, 233. 49) R. N. Haward, J. Polym. Sci. Part B:Polymer Physics, 45, 9 (27). 5),, 77(), 2 (24). 5),,,, 3, (983), p. 288. 52) I. Doghri, Mechanics of Deformable Solids, Linear and Nonlinear Analytical and Computational Aspects, Springer (2), p.59. 53),,, A, 77(778), 92 (2). 54) N. Moës, J. Dolbow, and T. Belytschko, International Journal for Numerical Methods in Engineering, 46(), 3 (999). 55),, A, 67 (659), 93 (2). 2-

PROFILE Masaaki TSUTSUBUCHI Yasuhito NIWA Tomoo HIROTA Tai SHIMASAKI 2-