Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma

Similar documents
Chapter (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a

Chapter 3 Mathematica Mathematica e ( a n = ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n Mathematica Mat

agora04.dvi

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].5. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

untitled

untitled

sin x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[x

+,-,*,/,^ Mathematica 2Pi * + 2; (Enter) Maple + 2 (Shift+Enter) Mathematica 3 Maple abs(x) Mathematica Abs[x] : % %+ : ^ *, / +, - 23^4*2 + 4/2; (Mat

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1

no35.dvi

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

i

all.dvi

1 1 [1] ( 2,625 [2] ( 2, ( ) /

chapt5pdf.p65

untitled

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2000年度『数学展望 I』講義録

(2000 )

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

橡00扉.PDF

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

32

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1 matplotlib matplotlib Python matplotlib numpy matplotlib Installing A 2 pyplot matplotlib 1 matplotlib.pyplot matplotlib.pyplot plt import import nu

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

/Users/yamada/Documents/webPage/public_html/kkk/10 線形代数

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ランダムウォークの境界条件・偏微分方程式の数値計算

mugensho.dvi

FX ) 2

FX自己アフリエイトマニュアル

1 I

matrix util program bstat gram schmidt

1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac * Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12

( ) x y f(x, y) = ax

6. Euler x

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1 Mathematica 1 ê Mathematica Esc div Esc BasicInput 1.1 Ctrl + / Ctrl + / Ctrl / Mathematica N π D

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

卓球の試合への興味度に関する確率論的分析

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

ParametricPlot [5] In[5]:= Out[5]= m1.v1 axby, cxdy [6] pr In[6]:= Out[6]= pr = m1.m 3ab, ab,3cd, cd [7] In[7]:= Out[7]//MatrixForm= pr //Matri

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

gnuplot.dvi

joho09.ppt

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

1_sugata

MacOSX印刷ガイド

Œ{Ł¶/1flà

9 chapter

荳也阜轣ス螳ウ蝣ア蜻・indd

Morse ( ) 2014

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^

pdf

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

USB ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231

90 0 4

サイボウズ ガルーン 3 管理者マニュアル

P indd


85

1


今日からはじめるプロアクティブ

1 2 STEP 1 STEP 2 STEP 3

1


untitled

H1_H4_ ai

制御盤BASIC Vol.3

altus_storage_guide


F-09C

FA0072 FA0028



資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

Transcription:

Mathematica Workbook Workbook Mathematica Mathematica A4 12 A5 9 14 4 2

Chapter 3 Mathematica Mathematica e a n = ( 1 + 1 ) n b n = 1 + 1 n 1! + 1 2! + + 1 n! b n a n e 3/n b n e 2/n! b n a n b n M athematica 10 3.7 3.1 Mathematica { } {a, b, c} {{a, b}, {c, d}} {Sin[x], Cos[x], Tan[x]} [1] v1 v2 In[1]:= v1 = {a, b, c}; v2 = {p, q, r}; [2] v1 v2 In[2]:= v1 + v2

22 3 [3] In[3]:= 100*v1 [4] 1 : In[4]:= v1 + 1 [5] x : In[5]:= x - v1 [6] 3 In[6]:= v1^3 [7] 5 In[7]:= 5^v1 [8] In[8]:= Exp[v1] [9] In[9]:= v1^v2 [10] In[10]:= v1*v2 [11] In[11]:= v1/v2 [12] In[12]:= v1.v2 3.1 u = {1, 2, 3, 4, 5} x { 1 3 1, 2 3 2, 3 3 3, 4 3 4, 5 3 5 }, { x, x 2 2!, x 3 3!, x 4 4!, x 5 } 5! n n! Factorial[n]

3.2 23 3.2 Range [13] Range {1, 2, 3, 4, 5} In[13]:= Range[5] [14] Range {4, 5,..., 10} In[14]:= Range[4, 10] [15] Range 4 x 10 0.7 In[15]:= Range[4, 10, 0.7] 4 0.7 10 Table [16] Table (square numbers) sq In[16]:= sq = Table[n^2, {n, 1, 10}] Table[..] n 1 10 1 n^2 Table [17] [[ ]] sq 7 In[17]:= sq[[7]] [18] Length sq In[18]:= Length[sq] 3.2 (e ) Table e a n = ( 1 + 1 ) n n 10 N an

24 3 3.3 ( ) Table x 1, x 2 1,, x 10 1 3.4 ( ) mat = {m,a,t,h,e,m,a,t,i,c,a} tam Table (Hint tam n mat ) 3.3 [19] m1 *1 In[19]:= m1 = {{a, b, c}, {p, q, r}}; [20] MatrixForm m1 (matrix) In[20]:= m1 //MatrixForm MatrixForm[m1] * 2*3 [19] m1 [21] TableForm m1 (table) In[21]:= m1 //TableForm TableForm[m1] [22] Table In[22]:= m2 = Table[i + j, {i, 1, 4}, {j, 1, 5}] [23] TableForm *1 [1] v1 = {a, b, c} v2 = {p, q, r} m1 = {v1, v2} *2 Sin[x] x//sin TableForm MatrixForm *3 MatrixForm 2*m1 2 2*MatrixForm[m1] TableForm

3.4 25 In[23]:= m2 //TableForm m2 [22] {i, 1, 4} {j, 1, 5} [24] [[ ]] 2 5 In[24]:= m2[[2, 5]] 3.5 ( ) TableForm 1 9 1 19 3.6 ( ) 1 10 2 3 3.4 Mathematica Sum [25] Sum 1 10 2 In[25]:= Sum[n^2, {n, 1, 10}] 10 n=1 n 2 [16] sq = Table[n^2, {n, 1, 10}] Table Sum [26] Mathematica 2 In[26]:= Sum[k^2, {k, 1, n}] [27] 1 + 1/2 2 + 1/3 2 + In[27]:= Sum[1/n^2, {n, 1, Infinity}] Infinity [28] 8 *4 *4 Sum[x^n/n!, {n, 0, Infinity}] Exp[x]

26 3 In[28]:= Sum[x^n/n!, {n, 0, 8}] [29] Product 1 19 10 n=1 In[29]:= Product[2*n - 1, {n, 1, 10}] (2n 1) [30] 3.5 In[30]:= Sum[m * n, {m, 1, 9}, {n, 1, 9}] 3.7 ( ) e a n = (1) Sum b 5 ( 1 + 1 ) n b n = 1 + 1 n 1! + 1 2! + + 1 n! (2) Table b n 10 bn (3) bn 3.2 an a n, a n e, b n, b n e x Abs[x] Sum 3.8 ( ) Mathematica 100 3 (1). k + k 1 99 k=2 (2) 2 2 2 1, 2 3 2 1, 2 4 2 1,... n 00 (3) m 1, 3, 5,..., 2m 1 2 m C 2 99

3.5 27 3.5 Mathematica (1) i 1 m j 1 n i + j 1 i m,1 j n (i + j) (2) i, j, k 1 n i + j + k 1 i,j,k n (i + j + k) (3) 4 8 n S n S 99 S 100 S 1 S 100 S n 92 (Hint: S n 1 + log 10 S n x Floor[x] ) (4)

Chapter 14 3 1 1 13 14.1 (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a 0 ))) f a 0 1 3 *1 {a n } R 0, ±1, ±2, x 1 f(x) = 2x *1 3

138 14 R f (dynamical system) *2 x 0 R x 0 f f(x 0 ) f f(f(x 0 )) f x 0 f 2x 0 f 2 2 x 0 f x 0 (orbit) {a n } a 0 = 1 f f f f f n f n {f n (x 0 )} *3 f f(x) 2 f 10 (x) x 1024 Mathematica 14.2 p y = f(x) p f(p) f(f(p)) f(f(f(p)))... y = f(x) xy (p, p) (f(p), f(p)) Step 0 y = f(x) y = x Step 1 (p, p) y = f(x) (p, f(p)) Step 2 (p, f(p)) y = x (f(p), f(p)) Step 1 2 y = x p 14.1 (graphical analysis) web diagram f(x) = 2x x 0 = ±1/4 14.2 Mathematica ListLinePlot Show *2 (discrete dynamical system) *3 f n (x) f f f f(x) f(x) n {f(x)} n

14.2 139 y y = x f(p) p y = f(x) O p f(p) x 14.1 f(x) (p, p) (f 2 (p).f 2 (p)) 2 6 4 5 4 3 2 1 1 2 2 2 4 2 1 1 2 3 4 5 6 2 14.2 f(x) = 2x x 0 = 1/4 x 0 = 1/4 [1] Step 0 y = f(x) = 2x y = x In[1]:= f[x_] := 2 x; gr = Plot[{f[x], x}, {x, -2, 8}, AspectRatio -> Automatic] [2] Step 1 Step 2 (p, p) (p, f(p)) (f(p), f(p)) In[2]:= tateyoko[p_] := {{p, f[p]}, {f[p], f[p]}}; [3] p n

140 14 In[3]:= weblist[p_, n_] := (w = {{p, p}}; x = p; Do[(w = Join[w, tateyoko[x]]; x = f[x]), {i, 1, n}]; w); [4] In[4]:= weblist[1/2, 3] [5] In[5]:= webdiag[p_, n_] := ListLinePlot[weblist[p, n], PlotStyle -> Thick, AspectRatio -> Automatic, PlotRange -> All]; PlotRange -> All [6] In[6]:= webdiag[1/2, 3] [7] Show In[7]:= Show[gr, webgr[1/2, 3]] [8] Manipulate p n In[8]:= Manipulate[Show[gr, webgr[p, n]], {{p, 1}, -1, 4}, {{n, 3}, 0, 10, 1}] n 14.1 ( ) 2 g a (x) = ax(1 x) 0 a 4 [0, 1] [0, 1] Manipulate a 14.2 ( ) 1 (1)

14.3 141 (2) y = x 14.3 f(x) f(x) = 0 (Newton s method) (1) y = f(x) (2) x 0 (x 0, f(x 0 )) (3) x (x 1, 0) x 0 f(x) = 0 α x 1 α *4 (x 1, f(x 1 )) x 1 = x 0 f(x 0 )/f (x 0 ) N f (x) := x f(x) f (x) N f x 0 N f x1 = N f (x 0 ) N f f x 2 = N f (x 0 ) α N f f 14.3 *4 f C 2

142 14 [9] f(x) = x 2 2 2 f In[9]:= f[x_] = x^2-2; df[x_] = D[f[x], x]; newton[x_] = x - f[x]/df[x] N f (x) = x2 + 2 2x [10] NestList x 0 = 1 x 0, x 1,..., x 5 In[10]:= app = NestList[newton, 1, 5] [11] 20 In[11]:= N[app, 20] //TableForm TableForm [12] Sqrt[2] *5 In[12]:= N[{app, app - Sqrt[2]}, 20] //Transpose//TableForm [13] In[13]:= seg[p_] := {{p, f[p]}, {newton[p], 0}}; seglist[p_, n_] := (w = {{p, 0}}; x = p; *5 Transpose[N[{app, app - Sqrt[2]}, 20]] //TableForm TableForm[N[{app, app - Sqrt[2]}, 20], TableDirections -> Row]

14.4 143 Do[ (w = Join[w, seg[x]]; x = newton[x]), {i, 1, n}]; w); seggr[p_, n_] := ListLinePlot[seglist[p, n], PlotRange -> All, PlotStyle -> Thick] gr = Plot[f[x], {x, -5, 5}]; Manipulate[ Show[gr, seggr[p, n]], {{p, 5}, -5, 5}, {{n, 3}, 1, 10, 1}] p 2 p 2 * 6 1 3 14.3 ( ) 3 g a (x) = x 3 3x + a (a > 0) Manipulate a a g a (x) = 0 a p n 10 5 2 2 4 5 14.4 C f(z) 1 (complex dynamics) f(z) f c (z) = z 2 + c (c C) 2 f c c C *6 p 0 f

144 14 f c z f n c (z) (n ) *7 B c := {z C f n c (z) (n )} c f c (basin at infinity) B c K c := C B c (filled Julia set) B c K c f c (Julia set) J c J c Mathematica * 8 c 2 z C fc k (z) 2 k fc k+n (z) n B c (k) := { z C f k c (z) 2 } B c (1) B c (2) B c = k 1 B c(k) k B c (k) B c k = 50 [14] c = 0.122 + 0.745i B c K c f c *7 z 2 + c f c (z) 2 z f(z) = z 2 + c z z c (2+ c ) z c 2 z + c ( z 1) 2 z + c (1+ c ) 2 z. f n (z) 2 n z (n ) z max{2, c } f n (z) (n ) *8 Mathematica C Java Mathematica C

14.4 145 In[14]:= c = -0.122 + 0.745 I; f[z_] := z^2 + c; [15] B c In[15]:= col[z_] := (p = z; k = 0; While[(Abs[p] < 2.0) && (k < 50), (p = f[p]; k = k + 1)]; k) While f c k (z) < 2 k < 50 (...) p = f[p]; k = k + 1 k f k c (z) 2 k 49 k = 50 f k c (z) < 2 col 0 50 49 z B c 50 z K c [16] {x + yi 2 x 2, 2 y 2} d = 0.01 Table col In[16]:= d = 0.01; tab = Table[col[x + y I], {x, -2, 2, d}, {y, -2, 2, d}]; * 9 [17] tab ArrayPlot complexap (complex Array Plot ) 14.4 In[17]:= complexap[t_] := ArrayPlot[Reverse[Transpose[t]]]; *9 400 400 = 160000 col col 50 d

146 14 14.4 complexap d col tab Transpose Reverse ArrayPlot [18] tab complexap In[18]:= complexap[tab] col B c K c 14.4 ( ) B c c 14.6. f c z = 0 f c(z) = 0 z = 0 f c z = 0 0 B c c H := {c C fc n (0) (n )} M := C H

14.4 147 14.5 ColorFunction "LightTemperatureMap" "MintColors", "WatermelonColors" "RedBlueTones". 14.6 c = 1 c = i, 0.22 + 0.65i c = 0.25.

148 14 (the Mandelbrot set) * 10 14.5 ( ) complexap2 M. f(z) = z 3 1 = 0 z 0 N f (z) 2 1 3 N f (z) f f, df, newton d = 0.01; f[x_] = x^3-1; df[x_] = D[f[x], x] newton[x_] := x - f[x]/df[x]; coln[z_] := (p = z; k = 0; While[(Abs[p^3-1] > 0.1) && (k < 50), (p = newton[p]; k = k + 1)]; k) tabn = Table[colN[x + y I], {x, -2, 2, d}, {y, -2, 2, d}]; complexap2[tabn] *10 K c c

14.5 149 14.5 (1) R. Devaney 2 (2) 2 http://www.math.nagoya-u.ac.jp/~kawahira/courses/mandel.pdf