Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

untitled

meiji_resume_1.PDF

untitled

TOP URL 1

プログラム

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Z: Q: R: C: sin 6 5 ζ a, b

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


: , 2.0, 3.0, 2.0, (%) ( 2.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

TOP URL 1

基礎数学I

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


Part () () Γ Part ,

液晶の物理1:連続体理論(弾性,粘性)


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

本文/目次(裏白)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

支持力計算法.PDF

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

TOP URL 1

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V


磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

85 4

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

量子力学 問題

2000年度『数学展望 I』講義録

Gmech08.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

H.Haken Synergetics 2nd (1978)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

Untitled

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

snkp-14-2/ky347084220200019175


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Note.tex 2008/09/19( )

chap03.dvi

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

PDF

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

untitled

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

nsg02-13/ky045059301600033210

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

all.dvi

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

振動工学に基礎

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

chap9.dvi

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising


all.dvi

report.dvi

dynamics-solution2.dvi

( )

untitled

総研大恒星進化概要.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

構造と連続体の力学基礎

Z: Q: R: C: 3. Green Cauchy

Transcription:

σ γ l σ ο 4..5 cos 5 D c D u U b { } l + b σ l r l + r { r m+ m } b + l + + l l + 4..0 D b0 + r l r m + m + r 4..7 4..0 998 ble4.. ble4.. 8 0Z

Fig.4.. 0Z 0Z Fig.4.. ble4.. 00Z 4 00 0Z Fig.4.. MO S 999 Fig.4..4 S

8es.75 : ESOUO.758, EM SDDS FO S MOEUV, 99, 994,999,pp.0- DE5F.4: MOEUV OF SS D MOEUVEG SDDS, 99 4 MS 7006, eision of nterim Stndrds for Ship Mnoeurbility resolution.758, 998, 76, 994, pp.59-65 6 MS 709, he results of inestigtion nd proposls for the mendments to interim stndrds for ship mnoeurbility resolution.758, 999 7, 44, 964, pp.8-8 suo oshimur et l. : E FO -EKG D OUSE-KEEG ES MO s EM SDDS FO S MOEUV, MSM000, 000, pp.89-400 9 MSirc.644 : EO OES O E EM SDDS FO S MOEUV,994 0,, 55 977,pp.7-9, 8 OMO GU : SME, 57 978,pp.-9, 58 979pp.7-9 Kijim,K. et l. : On the Mnoeuring erformnce of ship with the rmeter of loding ondition, 68, 000 990pp.4-48 4,, 89,995,pp.55-66,, 98,.,999,pp.67-77 6,, 8 7-80,99,pp.55-65 7 7,,, 99, pp.57-86 8 74 9, 998, pp.-6 9,, 99 0,,,, 999, pp.4-7 966, pp.-4 5, <4>,, Vol.48 995-, 995, pp.40-49 Fujino,M : Keynote lecture : rediction of ship mnoeurbility : Stte of the rt, Mrine Simultion nd Ship Mnoeurbility996 4 KOSE.,K.,et l.: Systemtic pproch for ship mnoeurbility prediction, Mrine Simultion nd Ship Mnoeurbility996 5, 78, 989, pp.9-6 6,.,, 7,, 996, pp.-4 7,.,, 98, pp.0-6 ESMO MEOD O S MOEUV MES OF MOEUVG 5, 995, pp.68-07 EFOME DSE, MSM000, 000, pp.89-00 9, 0 0.,,, 970, pp.-9 S,,, 98, pp. 0,, 99, pp.5-54

4 S,, 996, pp.7-6

9 MMG 456 7 FD 8 9 0 6 4 5 -D 6 DOSV OS indows Fig.5..Fig.5.. 6 4 Z Z

Fig.5.. 5.. 5.. Fig.5..4Fig.5..5 V -D MO 758 dnce cticl Dimeter nitil urning bility 0 Z 0Z 4 Fig.5..6 MMG MMG 6 MMG Fig.5.4. 0-0y0 G y z G-yz Q n K r ur m r u m E zz + & & & & & π φ 5.4.

m ZZ E E rr 5.4. 4 K K Q Q + + + + K + Q E + + + + K + + + + K + + + + K + + + + K 5.4. K QQE 5.4. t0,, ρdu,, ρ K K du r r U 5.4. ppd U 4 0 J t ρn D K 5.4.5 J u w nd 5.4.6 w w 0 4.0 β β ep β n r 5.4.7 D w0 p KJ J w 5 6 7 5.4.7 m & m ur + y J zz r& + 0 + 0 + 0 M + 5.4.8 mu& + my + r r + u + + rrr + 4 5.4.4 mmy y Jzz5.4.8 5.4.4 my+rmmy m Fig.5.4. 00 0 [ ] 0

0 ρdu M rrm + + + r + r r M M r M M rr M M ρdu + r 0 M r M [ ] + r + r + r r r M M rr M M r r M M 0 ρdu M r M + r + M + r M r M + rrm rm + rrrr M ρdu + r 0 M r M 5.4.9 + M + r M rm + rr M rm + rrr r M 5.4.9 d 5 ρdu ρ du [ + φ + r φ ] φ [ φ + φ + r φ ] φ φ φ rφ rφ 5.4.4 8 5.4.0 5.4.9 5.4.0 45 7 5.4.9 r r { 0.5πk + f } + 0.67τ 0.5πk + 0.80τ l k 0.7τ l 0.54k k k d, k + 0.0τ τ τ d { 0.5πk + f } f.4 5.4. 5.4. d k MrM G r M M + r M r 5.4.,, φ φ φ rφ φ rφ 0.008 0.0.7.60 r 5.4.5 V r 5.4. K & φ & φ GZ φ z 5.4.6 J J GZ z GM + J π GM 5.4.7 J π + φ κφ z OGh 5.4.8 M M κ OG h

hd w 0 0 0 w w w w ep β 5.4.4 K F + + + sinδ F F z F cosδ cosδ cosδ 5.4.9 5.4.9 Fig.5.4. z F F ρf U sinα 5.4.0 f 9 w00.5 w,, 5.4.7 α δ + δ 0 γβ 5.4.5 0 s0 5.4. s 0s090 5.4.5 γ S 5.4.6 5.4.6 { + 0.6η.4s s s } s { s + 0.6η.4s s} 5.4.7. + Λ f 6.Λ 5 5.4. Λ Λ h, h, f s S S β S0 0.45 β S0 β > 5.4.8 S0 U 0 U [ ηk s + { k k } ] n w w η s k 0.6 u w n, w w s η D h 5.4. 5.4. w 5.4.8 s0 s00.5 5.4.5 5.4.8 -r r u U cos β U sin β 5.4.9

m & m ur + y J zz r& + 0 + 0 + 0 M + 5.4.0,, e p e e 4+ m m m m ρ d σ w p d.5 K + 0. 0.95 + 0.40 e k d σ 5.4. + 0 ρdu β β rr 0 ρdu β β rr + ββ ββ+ rrr r + ββ rβ + rrr β βr + + ββ β β + rrr r + ββ rβ + β rrr β r 5.4. 5.4. β πk +.957 σ r m + m πk + 0.05e 0.457 4.99 σ +.05 ββ { { } 0.5 d e 0. rr 7.56 d β rr { } { } ββ r 0.44 d e 9.74 d e +.7 β k 50.668 d e K r.89 d ek +.80} k + k e K + 0.54 0.0477 0.068 ββ 4.857 d e K.67 d e K + 0.086 0.5K 0.068 rr 0.4086 + 0.7 β rr { } 0.86 d e 0.06 ββ r 5.4. m m wwp 5.4.5.4. { } β τ β 0 + 6.059 σ.45 τ r τ + { r 0 + } { 0.07 τ } ββ τ ββ 0 { 7.404 σ 6.5 τ } rr τ rr 0 { + { 0.57 4.} τ } βrr τ βrr 0 { 8.8.6 τ } ββr τ ββr 0 { + { 7.747.508} τ } β τ β 0 { 0.95 τ d } r τ r 0 { + [ 0.97.565] τ } ββ τ ββ 0 rr τ rr 0 { + 0.7 τ } βrr τ βrr 0.98 4.648 + 7. τ d ββr τ ββr 0 { 0.9 τ } d d m m m m d d d d e d k d e K d e d d { } e e d 5.4.4 ρ φ+ βφ+ φ du φ βφ rφr + ββφββφ+ rr φr r φ+ ββφrβ r φ+ β rrφ βr φ ρ φ+ βφ+ φ du φ βφ rφr + ββφ β βφ+ rrφ r r φ+ ββφr βr φ+ βrrφ βr φ

5.4.5 4 K K t + + + F F z sinδ F cosδ F cosδ cosδ 5.4.6 g s s k 0.6 ηk{ k s} s w u n, w w s η D h 5.4.40.065 0.95 w w w w w 0 0 w0 7.4406d.907 σ + 0.85 w 5.4.7 5.4.4 t t 0.8 + 0.55 5.4.7 Fig.5.4.4 z z F 5.4.0 F f U sinα d 5.4.8 α δ γβ b b d e γ 4.097d +.9776 d e.544 b + 0.8 β β r 5.4.4 K 95 sherwood 6 U U w { g s } 5.4.9 + F F ρ K ρ U ρ U ρ U U ψ ψ K ψ ψ sgn ψ ψ sgn ψ ψ K ψ ψ sgn ψ M 5.4.4 5.4.44

F F K U O. sherwood 0 + + + 0 + + + 0 + + + + + 4 4 + 4 S S S + + 5 + + 6 + 6 5 5 M SS 5.4.45 5.4.45 SS M S 06,05,0 5 6 K E K D E E + D + + K D D 5.4.46 E 7 S gθwsw sinχsin kcos χ ω t d E e S gθwsw sinχsin kcos χ ω t d E e { } K OGl E E ωu ω e ω g l S S { } S k sin χ d S d d 0 e kz k sin χ sin ky sin χ dz { 0 d 0 e e kz kz 5.4.47 sin ky sin χ ydy sin ky sin χ zdz} 5.4.48 w Sw OG k e D 0 ewmn 8.

D D D D D D D D K du K du du du ρ ρ ρ ρ 5.4.49 { } {,, cos sin sin, sin, cos 0 0 0 * 5 * cos 5 cos 0 * 5 * cos 5 cos zw K d d k du gk d d k k J i i e i i e du gk d d k k ij k k J i i e i i e du gk D D D ik ik D ik ik D + + + + + + χ χ χ ζ ζ ζ ζ χ ζ ζ ζ ζ χ χ χ χ } 5.4.50 0,,,,, cos 0 0 5 cos 0 i for d d e i d e i n n ik ik χ χ ζ ζ 5.4.5 z J0,J,5 0 D D D D D D D D D g g g ρ ς ρ ς ρ ς 5.4.5 y t U t U ψ ψ sin cos 5.4.5 zn n n n n l K l 0 5.4.54 n ln lzn 5.4. Q E E Q Q Q n + & π 5.4.55 J K D n n J Q Q 5 ρ π & 5.4.56 J KQ Q E K D n Q 5 ρ 5.4.57

Q E πn S 5.4.58 0 S0 5.4.57 QE n S0 t uu0r0u r0 Jp 9 Jp Jp Kp K Z 5.4.59 Z 98pp.7-80. Fig.5.5.5.5.4 Fig.5.5. Fig.5.5.Fig.5.5. Z 5 Z 0 U 90deg ms 0deg 6ms Z Fig.5.5.4 0.04m 4.0m 98pp.9-6 98pp.0-6 4. 57 979 5. 58 979 6 K.KJM,.KSUO,.K,.FUUK On the mnoeuring performnce of ship with the prmeter of

loding condition, Journl of the Society of l rchitects of Jpn, Vol.68990 7 4 5 997 pp.07-8 FD 87 000pp.-0 9 8 998 pp.77-90 0 5.Fujiwr, M.Ueno nd.imur n 88 000 pp.6-7 6.M.sherwood ind esistnce of 000 MO esolution.758 nterim Stndrds for Ship Mnoeurbility, o. 99 8 ewmn J..he drift force nd moment 05 959 9 06 960 06 960 4 K.segwOn erfomnce ritererion of utopilot igtion 76 980 5 46 979 6 76 980 7 45 979 8 M.irno, J.kshin lcultion of ship urning Motion king oupling Effect Due to eel into onsidertion, 59 980 9 0 96 0 44 978 45 979 47 980 98 999 4 9 996 Estimtion Method of ind Forces nd Moments cting on Ships, roceeding of Mini Symposium on rediction of Ship Mnoeuring erformnce, 00, pp.8-9 Merchnt Ship97 7 Swywoll 966 pp.5-40 on ships in wes, Jour. of Ship eserch.967 69 978

ind ind e

MO FD FD ldwin-om 0 FD slow motion derities FD 87 MO