Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Similar documents
IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

28 Horizontal angle correction using straight line detection in an equirectangular image

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

e-learning e e e e e-learning 2 Web e-leaning e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

GPGPU

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

28 TCG SURF Card recognition using SURF in TCG play video

23_02.dvi

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

6_27.dvi

,,.,.,,.,.,.,.,,.,..,,,, i

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

2 ( ) i

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

3_23.dvi

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

Fig. 1 Hammer Two video cameras Object Overview of hammering test (14) (8) T s T s 2

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

fiš„v5.dvi

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Web Web Web Web Web, i

( )

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-GI-34 No /7/ % Selections of Discarding Mahjong Piece Using Neural Network Matsui

FA FA FA FA FA 5 FA FA 9

21 Key Exchange method for portable terminal with direct input by user

soturon.dvi

1: ( 1) 3 : 1 2 4


The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

Transcription:

1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives a flicker to a picture to make animation. However, the flicker generated by the simple harmonic motion causes monotonous animation. In this study, we propose the method of creating complex and natural flicker by using 1/f β noise seen often in nature. We carried out the experiment that compares the proposed method to the conventional method by the subjective appraisal, and confirmed the adequacy of the proposed method. 1. [1] [2] [3] 1 Graduate School of Information Science and Technology, Hokkaido University a) k yamamoto@ist.hokudai.ac.jp b) yuji@ist.hokudai.ac.jp [4] [4] 1/f β c 212 Information Processing Society of Japan 1

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time Loop end Input image Height map Shade image Output image (1) H ij (t) C A H ij (t) C + A A C 2 A = 127.5, C = 127.5 A C ω T ω T ω = 2π/T α ij (1) t = H ij () H ij () = A sin α ij + C (2) α ij ( ) α ij = sin 1 Hij () C A (3) α ij α ij π/2 π/2 < α ij π H ij () H ij (t) 1 Fig. 1 Overview of preceding study. 2. 2.1 [4] 1 (i, j) H ij H ij H ij [5] Lambert H ij H ij (t) = A sin(ωt + α ij ) + C (1) H ij (t) (i, j) t H ij () H ij (t) H ij (t) 255 A C 2.2 (1) A ω t 3. 3.1 1/f β [6] 2 f 1/f β β β β = β = 1 1/f β = 2 1/f 2 1/f c 212 Information Processing Society of Japan 2

1/f [6] 3.2 1/f β 3.1 1/f (1) (1) A ω α α ω A ω 3.2.1 1/f = A X A (t) (4) A X A (t) X A (t) [, 1] X A (t) 1 1 X A (t) ω (4) (1) ω (4) X A (t) X A (t) = n N(t i)p (i) (5) i= X A (t) [, 1] (5) n N(t) t 1/f P (t) τ P (t) = exp ( t ) τ (6) (5) P (t) (FIR: Finite impulse response) n FIR (4) (5) (6) H(t) 3.2.2 ω(t) = ω X f (t) (7) ω X f (t) X f (t) 2 +1 3.2.3 A ω A ω A ω (4) (7) (1) H ij (t) = A X A (t) sin(ω X f (t)t + α ij ) + C (8) 3.3 1/f β 3.1 1/f β 1/f 1/f β N(t) 3.3.1 [, A] n Z n n Z n n/2 A n/12 A 2 Z n n/2 A N(t) 3.3.2 1/f 1/f [7] N(t) + un(t) z N(t) <.5 N(t + 1) = 2N(t) 1.5 < N(t) < 1 (9) N(t) > 1 u > 1 < z < 2 3.3.3 1/f 1/f 1/f N(t) c 212 Information Processing Society of Japan 3

(a) Poplar (b) Rowan (a) (b) (c) River (d) Waterfall 2 Fig. 2 Images used for making animation. [8] 3.3.4 N(, 1) N w (t) N(t) t N(t) = N w (s) (1) s= 4. 4.1 2 4 Poplar 512 512 Rowan River Waterfall 48 4 Poplar Rowan Poplar Rowan 1 2 1.5 (c) 3 1/f Fig. 3 Frames in generated animation of image Poplar with 1/f noise and difference of them. 12fps ω 1.2π[rad/s] A Poplar Rowan 127.5 River Waterfall Rowan River [9] Poplar Waterfall C# GUI 12fps PC CPU Intel R Core TM i7-26k CPU @ 3.4GHz 8.GB RAM 4.2 3 Poplar 1/f 3(a) 3(b) (a).5 3(c) (a) (b) A = 127.5 4 4(a) (b) 1/f (c) 1/f 2 (d) (a) (d) 5 ω 1/f c 212 Information Processing Society of Japan 4

5 1 (a) White noise 5 1 (b) 1/f noise Table 1 1 Score of subjective evaluations. 5 4 3 2 1 5 1 (c) Brownian noise 4 5 1 (d) Constant A = 127.5 Fig. 4 Amplitude in time domain (in case A = 127.5). 5 H(t) 256 5 1 1/f H(t) Fig. 5 Height H(t) using frequency with 1/f noise. Vote A C A N A C A N 3 s 1 s 3 s 1 s 3 s 1 s 3 s 1 s Fig. 6 6 A C : Animation with constant parameters A N : Animation with noise Presentation of animation. ω(t) 4.3 8 [1] 6 1 2 3 5 1 3 4.3.1 Poplar 1/f 1/f [8] 5 5 = 25 24 2 2 1/f 1/f 4.3.2 2 2 3 River Waterfall c 212 Information Processing Society of Japan 5

2 Table 2 Result of subjective evaluation (for noise). Freq. Amp. Constant White noise 1/f by chaos 1/f by filter Brownian noise Constant 3. 2.8 2.9 2.9 White noise 3.2 3. 3. 2.1 3. 1/f by chaos 3.1 2.8 2.7 2.2 2.5 1/f by filter 3.2 2.6 2. 2.4 2.8 Brownian noise 3.3 3.3 3. 3.2 3.5 3 Table 3 Result of subjective evaluation (for input image). Image Noise for amp. Noise for freq. Score Poplar 1/f 2 1/f 2 3.5 Rowan 1/f by filter Constant 3.2 River 1/f by filter Constant 2.6 Waterfall 1/f by filter Constant 3.2 Poplar Rowan 5. A ω 1/f A [4] [2] 2 Vol. J84-D-II No. 9 pp. 24-247 (21). [3] 1 2 3 Vol. No. 4 pp. 551-562 (21). [4] Vol. 32 No. 46 pp. 39-42 (28). [5] Blinn, J. F.: Simulation of wrinkled surfaces, ACM SIG- GRAPH 78 Proceedings, pp. 286-292 (1978). [6] Peitgen, H. O. and Saupe, D.: The Science of Fractal Images, Springer-Verlag New York (1988). 199 [7] 1/f p. 24 (22). [8] http://www.finetune.jp/ lyuka/technote/pinknoise/ (212.11.1). [9] 22 1B2-1 (212). [1] Subjective video quality assessment methods for multimedia applications, ITU-T Recommendation P. 91 (1999). [1] Chuang, Y.-Y., Goldman, D. B., Zheng, K. C., Curless, B., Salesin, D. H. and Szeliski, R.: Animating Pictures with Stochastic Motion Textures, ACM Transactions on Graphics pp. 853-86 (25). c 212 Information Processing Society of Japan 6