(Jackson model) Ziman) (fluidity) (viscosity) (Free v

Similar documents
知能科学:ニューラルネットワーク

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d



19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

薄膜結晶成長の基礎3.dvi

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

PDF

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

技報65

薄膜結晶成長の基礎2.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

B

untitled

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

main.dvi

SMM_02_Solidification

温泉の化学 1

Gmech08.dvi

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

第14章 ステレオグラフ

30


Mott散乱によるParity対称性の破れを検証

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Note.tex 2008/09/19( )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

85 4

第86回日本感染症学会総会学術集会後抄録(I)

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

The Physics of Atmospheres CAPTER :

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

TOP URL 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1

2000年度『数学展望 I』講義録

4/15 No.

SMM_02_Solidification

ëoã…éqä‘ëäå›çÏóp.pdf

数学の基礎訓練I

Microsoft PowerPoint - ‚æ5‘Í [„Ý−·…‡†[…h]

LLG-R8.Nisus.pdf

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

微粒子合成化学・講義

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

Transcription:

1) 16 6 10 1) e-mail: nishitani@ksc.kwansei.ac.jp

0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)( 0.1 ) (random structure) 12 ( (short range order) ) (random close-packed) Bernal

0. 1 3 0.1 Metal Shrinkage [%] Fe 4.0 Al 6.6 Cu 4.9 Mg 4.2 Flemings, Appendix B). Temperature: T time:t 0.1 0. 1. 2 0.1 (melting temperature: ) (super cooling or under cooling) (heat of fusion, latent heat: H m ) 0.2 G L G S 2

4 Free energy: G G L G S Temperature: T 0.2 G = 0 G = G S G L G = G S G L = H T S (1) H S T H m = H L H S = H T = G = 0 S = H m (2) S, H m G = H m + T H m = H m T (3) 0. 1. 3 S f 2ncal/K/mol 8.4nJ/K/mol (Richards rule) n 1 NaCl n = 2 (9 11J/K/n-mol)

0. 1 5 4e -10 G * r * 5e -07 Gsurface r -4e -10 Gtotal Gvolume 0.3 ( 14J/K/n-mol) ( 30 J/K/n-mol) 0. 1. 4 (homogeneous nucleation) σ (driving force) r G = G v 4πr 3 /3 + 4πr 2 σ (4) 0.3 (critical radius) r dg/dr = 0 r = 2σ G v = 2σ H m T (5) (3) (energy barrier or activation barrier G ) G = 16π 3 σ 3 G 2 v = 16π 3 σ 3 T 2 m (H m T ) 2 (6) Cu Cu 1356

6 1.44 10 2 erg/cm 2 1.88 10 10 erg/cm 3 0.3 100K (over heating) I Z N n I = N nz (7) ) Nn exp ( G kt G d ( ) I exp ( G + G d ) kt exp ( 1/T T 2) exp ( 1/T ) TTT (Time- Temperature-Transformation diagram) 0.4 (amorphous) (8) (9) 0. 1. 5 (inhomogeneous nucleation) 0.5 (substrate:s) (crystal:c) (liquid:l) (contact angle)θ

0. 1 7 Temperature: T time: t 0.4 TTT liquid σ ls σ lc θ crystal σ cs substrate 0.5

8 σ ls = σ cs + cos θσ lc (10) G hetero = G homo f(θ) = ( G v 4πr 3 /3 + 4πr 2 σ lc ) 2 3 cos θ + cos 3 θ 4 (11) (Appendix ) θ (wet) ( Si ) (inoculation) 0. 1. 6 (Jackson model) smooth surface facet rough surface non-facet Jackson N N A one layer Z S ( N NA N ) Z S (12) N A ɛ ( H = N A 1 N ) A Z s ɛ (13) N

0. 1 9 0.4 α=4 0.2 0-0. 2-0. 4 α=3 0.2 0.4 0.6 0.8 1 γ α=2 α=1 0.6 N N A W = N! N A!(N N A )! (14) S = k B ln W (Stirling s approximation) ln N! = N ln N N γ = N A /N S = k B N {(1 γ) ln(1 γ) + γ ln γ} (15) Z c L 0 L 0 = Z c ɛ (16) G Nk B = αγ(1 γ) + {(1 γ) ln(1 γ) + γ ln γ} (17) α = L 0 k B Z s Z c (18) α 0.6 α 2

10 0.2 System Orientation fcc < 100 > bcc < 100 > hcp < 10 10 > bct < 110 > diamond < 112 > 0. 1. 7 Chalmers) 0.2 KurzFisher) W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans Tech Publications, 1984, Switzerland. Chalmers) Bruce Chalmers, Principles of Solidification, John Wiley & Sons, Inc., 1964, New York. 1971 Flemings) Merton C. Flemings, Solidification Processing, McGraw-Hill, 1974, New York. Ziman) J. M. Ziman, Models of disorder, Cambridge University Press, 1979. 1982. 1 A G interface = A lc σ lc + A cs σ cs A cs σ ls (19) G interface = A lc σ lc + πr 2 (σ cs σ ls ) (20) R = r sin θ σ lc = σ cs + σ ls cos θ (21)

. 1 11 G interface = A lc σ lc πr 2 cos θσ ls (22) G interface = G volume + G interface = v c G v + (A lc πr 2 cos θ)σ ls v c (23) v c = πr3 (2 3 cos θ + cos 3 θ) 3 (24) A lc = 2πr 2 (1 cos θ) (25) G hetero = G homo f(θ) = ( G v 4πr 3 /3 + 4πr 2 σ lc ) 2 3 cos θ + cos 3 θ 4 (26) f(θ) = 2 3 cos θ + cos3 θ 4 = (2 + cos θ)(1 cos θ)2 4 (27)