「霧」や「もや」などをクリアにする高速画像処理技術

Similar documents
KinecV2 2.2 Kinec Kinec [8] Kinec Kinec [9] KinecV1 3D [10] Kisikidis [11] Kinec Kinec Kinec 3 KinecV2 PC 1 KinecV2 Kinec PC Kinec KinecV2 PC KinecV2

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

デジタルカメラ用ISP:Milbeaut

携帯電話向け画像処理LSI:Milbeaut Mobile

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

2017 (413812)

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

スマート都市監視を実現する富士通のDeep Learning技術

す 局所領域 ωk において 線形変換に用いる係数 (ak 画素の係数 (ak bk ) を算出し 入力画像の信号成分を bk ) は次式のコスト関数 E を最小化するように最適化 有さない画素に対して 式 (2) より画素値を算出する される これにより 低解像度な画像から補間によるアップサ E(

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

2007/8 Vol. J90 D No. 8 AdaBoos Haar-like AdaBoos Viola Jones Haar-like [17] (1) Haar-like AdaBoos (2) Suppor Vecor Tracking SVT [1] SVT [6] Okuma [10

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

,,.,.,,.,.,.,.,,.,..,,,, i

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

28 Horizontal angle correction using straight line detection in an equirectangular image

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

特別寄稿.indd

GPGPU

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

形状変形による古文書画像のシームレス合成

屋内ロケーション管理技術

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

main.dvi

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

07-二村幸孝・出口大輔.indd

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came


i

04_奥田順也.indd

2010 : M DCG 3 (3DCG) 3DCG 3DCG 3DCG S

システム開発プロセスへのデザイン技術適用の取組み~HCDからUXデザインへ~

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

サウジアラビアMEMSプロジェクト環境監視システム~海外ソリューションビジネスへの取組み~

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

proc.dvi

21 e-learning Development of Real-time Learner Detection System for e-learning

DEIM Forum 2012 E Web Extracting Modification of Objec

21 Effects of background stimuli by changing speed color matching color stimulus

モバイルネットワーク管理システム


Web Web Web Web Web, i

ï\éÜA4*

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

58 10

EPSON EP-803A/EP-803AW ユーザーズガイド

Transcription:

Fas Single-Image Defogging 谭志明 白向晖 王炳融 東明浩 あらまし CPU GPU720 48050 fps Absrac Bad weaher condiions such as fog, haze, and dus ofen reduce he performance of oudoor cameras. In order o improve he visibiliy of surveillance and on-vehicle cameras, we propose a fas image-defogging mehod based on a dark channel prior. I firs esimaes he amospheric ligh by searching he sky area in he foggy image. Then i esimaes he ransmission map by refining a coarse map from a fine map. Finally, i produces a clear image from he foggy image by using he amospheric ligh and he ransmission map. We achieved a run speed of 50 fps @ 720 480, wih a sofware implemenaion on a cenral processing uni (CPU) wih a graphics processing uni (GPU). This fas image-defogging mehod can be used in surveillance and driving sysems in real ime. FUJITSU. 64, 5, p. 523-528 09, 2013 523

まえがき 2.5 m PM2.5 12 2 34 56 1 100 従来技術 画像霧除去モデル x I J x x 1 A x x I xj x x A J x x A 1 x 図 -1 x I x A x J x I x I xa J x x e d x d x 霧除去の方法 Tan 7 Faal 8 524 FUJITSU. 64, 5 09, 2013

霧画像 I x 明画像 J x x A I xj xxa 1x x 画 I xax を J x を 画 に霧 を する -1 Kraz 9 He 10 Tarel 11 x I He 3.0 GHz Inel Penium 4 PC600 4001 10 20 ダークチャネル処理 He I dark x min c {r,g,b} min y x I y c I c I x x 5000 75 0 90 25 255 He 開発アルゴリズム 概要 I dark x J dark x x A 1 c x I dark x J dark xa c 0 I dark x A 1 c x x 1 I dark x /A c x 0 A FUJITSU. 64, 5 09, 2013 525

図 -2 I x AA I x x 環境光の推定 A I dark x 0.1 I x 図 -3 透過マップの推定 x 図 -4 x M coarse x min c {r,g,b} min y x I y c R G B x 図 -5 1213 R G B M fine x min c {r,g,b} I x c -2-3 -5 I x J x -4 526 FUJITSU. 64, 5 09, 2013

霧画像 CPU リ GPU リ 明画像 を 画像 CPU GPU -6 a b c d -7 x x x M x min max y x M coarse ym fine x x x 1M x /A 10 0.9 画像の復元 x J I x A /max x 0 A 0 0 実装 x GPUCPU GPU GPU GPU CPU GPU 図 -6 2.53 GHz Inel i5 CPU NVIDIA GeForce 310M GPUPC 720 480 50 fps 図 -7bd むすび FUJITSU. 64, 5 09, 2013 527

100 参考文献 1 Y. Y. Schechner e al. Insan Dehazing of Images Using Polarizaion Compuer Vision and Paern Recogniion, Proceeding of he 2001 IEEE Compuer Sociey Conference Vol.1 p.325-332 2001 2 S. Shwarz e al. Blind Haze Separaion Compuer Vision and Paern Recogniion, Proceeding of he 2006 IEEE Compuer Sociey Conference Vol.2 p.1984-1991 2006 3 J. Kopf e al. Deep Phoo Model-Based Phoograph Enhancemen and Viewing SIGGRAPH Asia 2008 4 S. G. Narasimhan e al. Ineracive De Weahering of an Image Using Physical Models Workshop on Color and Phoomeric Mehods in Compuer Vision 2003 5 S. G. Narasimhan e al. Chromaic Framework for Vision in Bad Weaher Compuer Vision and Paern Recogniion, Proceeding of he 2000 IEEE Conference Vol.1 p.598-605 2000 6 S. G. Narasimhan e al. Conras Resoraion of Weaher Degraded Images The IEEE Transacions on Paern Analysis and Machine Inelligence Vol.25 No.6 p.713-724 2003 7 R. Tan Visibiliy in Bad Weaher from a Single Image Compuer Vision and Paern Recogniion Proceeding of he 2008 IEEE Conference p.1-8 2008 8 R. Faal Single Image Dehazing. Proceeding of SIGGRAPH 2008 p.1-9 2008 9 L. Kraz e al. Facorizing Scene Albedo and Deph from a Single Foggy Image Compuer Vision, Proceeding of he 2009 IEEE 12h Inernaional Conference p.1701-1708 2009 10 K. He e al. Single Image Haze Removal Using Dark Channel Prior Compuer Vision and Paern Recogniion Proceeding of he 2009 IEEE Conference p.1956-1963 2009 11 J. P. Tarel e al. Fas Visibiliy Resoraion from a Single Color or Gray LevelIimage Compuer Vision, Proceedings of he 12h IEEE Inernaional Conference p.2201-2208 2009 12 X. Lv e al. Real-ime Dehazing for Image and Video 18h Pacific Conference on Compuer Graphics and Applicaions p.62-69 2010 13 K. He e al. Guided Image Filering Compuer Vision, Proceedings of he 11h European conference p.1-14 2010 著者紹介 谭 志明 (Tan Zhiming) 王炳融 (Wang Bingrong) 白向晖 (Bai Xianghui) 東明浩 ( ひがしあきひろ ) 528 FUJITSU. 64, 5 09, 2013