untitled

Similar documents
untitled

本文/目次(裏白)

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

第86回日本感染症学会総会学術集会後抄録(I)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

LLG-R8.Nisus.pdf

パーキンソン病治療ガイドライン2002

研修コーナー

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

TOP URL 1

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

2000年度『数学展望 I』講義録

陦ィ邏・2

日本内科学会雑誌第102巻第4号

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

四変数基本対称式の解放

Note.tex 2008/09/19( )

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

NETES No.CG V


O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Erased_PDF.pdf

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x



量子力学 問題

untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

B


2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

pdf

振動工学に基礎

DVIOUT-fujin

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

知能科学:ニューラルネットワーク


日本医科大学医学会雑誌第7巻第2号

all.dvi

構造と連続体の力学基礎

Transcription:

( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3

+ Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4 sin( sin { 9 ( } sin( os( z p z y 3 + γ 3 + γ 5 z p z y 3 ( page6 ot os 3 sin( ( ( >> β Α γ K os K os os( + + d d f ( ( sin( + sin( β os( + os( β os( tan + + β + β os( + sin( + sin( + + β os( β sin( β 6 7

( ((( ( γ K K tan 45 45 + h β Α sin a osψ a ψ + + b η tan a γ a γ b h h + γ tan { tanψ + ot tanψ η } sin( (ot + η os( ψ ( + h + ( + h ( tan + ot β (tanψ + ot(tanψ η tanψ 8 9 ( β ( β λ λ/ 5.m k/m 5.m.767m :.5 k/m 5.m.767m :.5 β33.69 45 + 45 + < < 45 + 3.6m 3.6m 3.6m β γ K K os β os β os β + os β os os β os sin( os( β 6 4 8 6 4 F e 3. d t F µ s 3. F s. 5.767 5 5 5 (m

( S S (m 8 6 4 4 6 8 (m (m 8 6 4 4 6 8 (m S S S S (m 8 4 6 8 (m 3 6 4 + sin( ( + sin( + sin( ( + sin( + 4 sin( os tan os( sin( < < 45 + 45 + < < 9 os(+ + 6 595 59 585 58 + 73 7475 7 7 7 54 55 56 57 69 58 59 6 6 6 63 64 68 575 5 5 53 54 55 56 57 58 59 ( ( ( 5 os 6 5 4 3

(.5m.54m k/m 94k/m.6m 8k/m e.6 <.7O.K k/m 94k/m.5m 8k/m.54m γ9k/m 3 3 F s.7 >.5 O.K e.6 <.7O.K F s.7 >.5 O.K.5m.5m :.5 6k/m.5m OK :.5 6k/m k/m 7k/m e.3 >.7.G F s.5 <.5.G k/m 5k/m e. <.7O.K.69m.56 >.5 O.K F s h h β b e d β b a a a sin { a tanψ + ot tanψ η γ h K } K osψ os sin os + + os os β b ( sin( β e β d 6 7 45+/ 45+/ m 4k/m sin( sin sin( + sin ( + + os γ os 8 35 /( 5m γk/m 3 35 33k/m 6.5 k/m 6.5 73.5 k/m 9. 58. 9

( ( ( (( 5.5 5.9 3

(x,y.m 3 k/m k/m 3 S u S u /F s r 9 45 / S u 45 /.m, (k/m 6 5 4 3 ( (9 Α F s r x i,y i.m 9 3 6 9 ( 4 C 5 s h: s h h: h s: : : s s h s: 6 7

( u u ( ( o O Q u π + (π + (6.8 + 8 9 ( ( θ θ θ θ θ θ θ θ Q u Q π u π + ( + 4 4 ot( π tan + e 4 π tan r r π / + Qu + {( + π } 5.4 r/ π r θ θ r r π r r r r r ( + π r + / / h C r C / r C C r r r e tan r r os os C r C h STE-3 STE- STE- 3 STE-3 STE- STE- 3

(m d γ + ot ( π tan + e 4 ( tan(.4 3m d + γ γ π tan ( ( 5 5 (m γk/m 4 3 k/m γk/m 6 3 k/m 3 ( i + i βγ η i D Qu e γ e γ + γ γ π tan + e 4 π tan ( ot ( tan(.4 θ i i 9 θ i γ θ 3 4 5 e e L ( e -e L e L-e L e L e L e 33 f 9 8 7 6 5 4 3 9 8 7 6 5 4 3 γ ( d + + γ γ d ( π (γ θ (,, π 4 ( (γ 34 π ( 4 ( Qu e κs + κs + γβγ Sγ (,, (γ Q h θ γ π/ tan ( e osθ os( tan + os( e + sin os( θ sin os( osθ e tan os( θ os Q u + + γγ π/+ tan π/4 / π os ( os e (os + tanθ sin γ γ 3 tan 8 6 4 8 6 4 3 4 5 6 7 8 ( G sin os + os os( 35 (k/m 98k/m 48 5.m k/m 3 k/m 3 k/m

( m tan.6 tan.4 tan. tan 3 4 5 γk/m 7 3 3 6 k/m 5 4 tan3 (k/m...3.4.5.6 36 6 3 6 3 3 max a a a (k/m 44 37 a (k/m u (k/m 35 3 53 5 (k/m 4 3 :.5 k/m 3 4 5 6 7 8 (m 5 a 5 3 5 (k/m.5.5.5 3 3.5 3m535 38 6 4 8 6 4 a 5 k/m k/m 3.5k/m 3.5k/m 5 (m 39

5 4 3 4 4 3 4.4m 4.m 8 Fs.37.59.5 out 4 6.5m k/m 3.65m 385.6k/m 97.6k/m 97.6k/m385.6k/m.3<.5 35k/m >a3k/m 43

:. 6.5m.4m 3.65m :.3 97k/m 6 µ.6 e.6m<.6m k/m γ8k/m 3 3 Ft3.>3. OK Fs.6>.5 OK 3k/m <3k/m OK o.5m b 4m k/m 385k/m 44 44 e.8m>.6m :. 45>3 γ8k/m 3 3 Ft.<3. G Fs.4<.5 G 35k/m >3k/m G o.5m b 4m k/m 34k/m 7 :. 4545 γ8k/m 3 45 e.3m<.6m Ft6.>3. OK Fs.6>.5 OK 64k/m <3k/m OK 3 3 45 45. :.4 type :.5 type type3 35 k/m 3. (.3.3 type 8.k/m type 4.3k/m type3.k/m type4 5.4k/m type5 44.6k/m type4 type5 S38S45 46 6. 7. 6. 5. :. :.5.5.5 :.3 :.5 :.5 :.45. 6. :.5 :. :..5.5 :. :. :.5 :.45 7. :..5 :.5 :.43 :.5 3 3 r3 r p 45 p 3 m (m. 35 35 r 35 r p 5 p 35 m (m. (k/m (m 47

p-r p r τ p τ r p 5 p 45 m. 3 r 35 r 3 48 m > > > r p r γ p γ r m tan 45 4 tan 45 γ tan 45 r p 49 p tan 45 γ r m tan 45.3 4 tan 45 r 8 3m m,33.9k D f Qa4,336.8k D f.4m.m D f.6m 8,68.8k D f.m Qa4,4.8k 5 G D f.4m D f.m 5

Df e S D f γ D f D f S S e tan/ 8.9m :.5 :.5 :.3 β 8 6 4 S tan γ tanγ tan π S + 4 e π tan 5 5 5 3 35 4 45 ( 5.9m :. (k/m 3 4 5 β 53 6 5 4 3 3m m m γ k/m 3 5 k/m 35 46 ( 44 4 4 38 36 34 3 3 8 6 4 5 + 3 4 5 5 ' v 5k/m ' v k/m ' v k ' /m v 3k/m 4.8ln + 7 σ v ' + 7 σ ' v γ thw + γ ' t ( x hw 54 γ t γ t h w x