Similar documents
CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

第1章 溶接法および機器

特-7.indd

環境負荷低減に向けた低温接合技術

電子部品はんだ接合部の熱疲労寿命解析

渡辺(2309)_渡辺(2309)

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Al-Si系粉末合金の超塑性

J. Jpn. Inst. Light Met. 65(6): (2015)

Corrosion Wear of Alloy Tool Steel (SKD 11) Coated with VC and Precipitation Hardening Stainless Steel (SUS 630) in Sodium Chloride Aqueous Solution T

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

錫-亜鉛-アルミニウム系鉛フリーはんだの実用化

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

Fig. 1. Schematic drawing of testing system. 71 ( 1 )


The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Plasticity-Induced Martensitic Transformation in Austenitic Stainless Steels SUS 304 and SUS 316 L at Room and Liquid Nitrogen Temperatures (Quantitat

資源と素材

S-5.indd

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed


Fig.1 A location map for the continental ultradeep scientific drilling operations.

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

UDC '24'26'-192: Strengthening of Ultra-low Carbon Ni-Cr Steel by Precipitation Hardening Isao KIMURA, Hiroshi YADA, and Mitsuo HONDA

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

Table 2 C, Al and Nb contents of samples (%) Table 3 C, Al and Nb contents of samples (%) Table 4 C, Al and Nb contents of samples (%) 6

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Fig. la PL spectra of PSL prepared on Si specimen (p = 1 k Q m) with electrochemical etching in HF solution (26wt %) under galvanostatic conditions of

特-4.indd

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

ステンレス鋼用高性能冷間鍛造油の開発

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット


n-jas09.dvi

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

Effect of Autofrettage on Fatigue Crack Growth Rate for High Pressure Reactors For high pressure reactor vessels such as for polyethylene production,


X線分析の進歩36 別刷

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

橡

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

走査型プローブ顕微鏡によるラテックス/デンプンブレンドフィルムの相分離状態の観察

鉛フリー無電解Niめっき皮膜中の共析物がはんだ実装信頼性に及ぼす影響

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

研究成果報告書

卒業論文

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

第七回道路橋床版シンポジウム論文報告集 Experimental Study on Fatigue Resistance of RC Slab with UFC Panel for Wheel Running Fatique Test * ** ** *** **** Kazuhiko Minaku

九州大学学術情報リポジトリ Kyushu University Institutional Repository 看護師の勤務体制による睡眠実態についての調査 岩下, 智香九州大学医学部保健学科看護学専攻 出版情報 : 九州大学医学部保健学

Evaluation of the Microstructures of CSP Microjoints with Sn-Ag Lead-Free Solders Ikuo SHOHJI *, Fuminari MORI * *, Shinichi FUJIUCHI * * and Masaru Y

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

_14.indd

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Title インジウムを添加した Ag-Au-Cu-Pd 系合金の物性 Author(s) 時崎, 照彦 ; 服部, 雅之 ; 小田, 豊 Journal 歯科材料 器械, 26(5-6): URL Right Post

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Mikio Yamamoto : Young's Modulus of Elasticity and Its Variation with Magnetization in Ferromagnetic Nickel-Copper Alloys. Young's modulus of elastici


0801297,繊維学会ファイバ11月号/報文-01-青山

技術研究所 研究所報 No.80

Viscosity of Ternary CaO-SiO2-Mx (F, O)y and CaO-Al2O3-Fe2O3 Melts Toshikazu YASUKOUCHI, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Effects of add

16 Dissolution Rate of Alumina into Molten CaO-SiO2--Al2O3-MgO Slags Shoichirou TAIRA, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Dissolution rate


Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195




三校永谷.indd

untitled

Refurbishment of Creep Damage Using Re-Heat Process for Ni-Based Superalloy under Bending Load

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

JFE(和文)No.4-12_下版Gのコピー

土木学会構造工学論文集(2009.3)

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

5b_08.dvi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

橡

untitled

Table 1 Table 2

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

Transcription:

9 171179 2006 Sn Ag Cu Effect of Addition Elements on Creep Properties of the Sn Ag Cu Lead Free Solder Megumi NAGANO*, Noboru HIDAKA*, Hirohiko WATANABE*, Masayoshi SHIMODA* and Masahiro ONO* * 191-8502 1 * Production Technology Laboratory of Fuji Electric Advanced Technology Co., Ltd. (1 Fujimachi, Hino-shi, Tokyo, 191-8502) 40 C125 C 2 Sn Ag Cu Sn 3.5Ag 0.5Cu Ni Ge Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge Sn 3.0Ag 0.5Cu 125 C 5MPaSn 3.5Ag 0.5Cu Ni Ge Sn 3.0Ag 0.5Cu 3 TEM Abstract Creep properties of two lead-free solder alloys, Sn 3.5Ag 0.5Cu Ni Ge and Sn 3.0Ag 0.5Cu, were investigated at temperatures between 40 C and 125 C. It is found that the creep strength of Sn 3.5Ag 0.5Cu Ni Ge solder is better than that of Sn 3.0Ag 0.5Cu solder. Especially in the low stress region at 125 C, the creep rupture time of Sn 3.5Ag 0.5Cu Ni Ge solder is about three times longer than that of Sn 3.0Ag 0.5Cu solder. Microstructure characterizations, including TEM analysis, were conducted in order to fully describe the creep properties of the lead-free solders. Key Words: Sn 3.5Ag 0.5Cu Ni Ge Solder, Lead-Free Solder, Creep Property, Microstructure, Dislocation, Stacking Fault 1. 2006 7 EU RoHS Sn Ag Cu Ni, Ge Ge Sn 1),2) Ni Ni 3) Sn Ag Cu (Ni, Ge) 2. NiGe Sn 3.5Ag 0.5Cu 0.07Ni 0.01Ge Sn 3.5Ag 0.5Cu Ni Ge JEITA Sn 3.0Ag 0.5Cu 2 Table 1 330 C SUS 14 mm 160 mm 30 Fig. 1(a)(b) 15 mm 3mm 60 C 24 Fig. 2 Table 2 3 (40 C, 75 C, 125 C) 2 Vol. 9 No. 3 (2006) 171

Table 1. Chemical composition of solder alloys Alloy No. Sn Ag Cu Ni Ge Sn 3.0Ag 0.5Cu Rem. 3.07 0.522 Sn 3.5Ag 0.5Cu Ni Ge Rem. 3.58 0.509 0.064 0.011 Fig. 3 Strength strain curve of both solders at 25 C and strain rate of 2.010 4 s 1 Fig. 1 Appearance of the test specimen Fig. 4 Strength strain curve of both solders at 125 C and strain rate of 2.010 4 s 1 Fig. 2 Miniature creep testing machine Ni X (TEM) Table 2. Creep test conditions 3. Test temp. Load stress (MPa) 40 C 14.7, 19.8 75 C 9.8, 14.7 125 C 5.0, 9.8 #2400 (0.25 mm)ph Ar (SEM) 3.1 3) 125 C Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge 2.010 4 s 1 Fig. 3Fig. 4 Sn 3.5Ag 0.5Cu Ni Ge Sn 3.0Ag 0.5Cu 3) 125 C 172 Vol. 9 No. 3 (2006)

Fig. 5 Creep curves of the Sn 3.5Ag 0.5Cu Ni Ge solder and the Sn 3.0Ag 0.5Cu solder at 40 C Fig. 8 The creep strength of the Sn 3.5Ag 0.5Cu Ni Ge and the Sn 3.0Ag 0.5Cu solders Fig. 6 Fig. 7 Creep curves of the Sn 3.5Ag 0.5Cu Ni Ge solder and the Sn 3.0Ag 0.5Cu solder at 75 C Creep curves of the Sn 3.5Ag 0.5Cu Ni Ge solder and the Sn 3.0Ag 0.5Cu solder at 125 C 4) 3.2 Fig. 5 Fig. 7 Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge Fig. 8 2 40 C75 C Sn 3.0Ag 0.5Cu 125 C 9.8 MPa 5MPa Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge 3 Fig. 9Fig. 10 Norton (1) e ss As n (1) e ss s n A Fig. 11 Fig. 12 Sn 3.5Ag 0.5Cu Ni Ge Sn 3.0Ag 0.5Cu Fig. 9Fig. 10 (1)Fig. 11Fig. 12 n Table 3 n n 5 3 7 2 5),6) Table 3 40 C Sn 3.5Ag 0.5Cu Ni GeSn 3.0Ag 0.5Cu n 11 5)7) 125 C n Sn 3.0Ag 0.5Cu n 5.9 n 5 Vol. 9 No. 3 (2006) 173

Fig. 9 Creep rate vs. normalized time for Sn 3.5Ag 0.5Cu Ni Ge solder Fig. 12 Relation between the stress and steady-state creep rate (Sn 3.0Ag 0.5Cu) Fig. 10 Creep rate vs. normalized time for Sn 3.0Ag 0.5Cu solder Fig. 13 Correlation of rupture time with Larson Miller parameter Table 3. The stress exponent of the solder alloys Alloy No. 40 C 75 C 125 C Sn 3.0Ag 0.5Cu 15.1 9.4 5.9 Sn 3.5Ag 0.5Cu Ni Ge 11.2 9.6 7.6 Fig. 11 Relation between the stress and steady-state creep rate (Sn 3.5Ag 0.5Cu Ni Ge) Larson Miller Fig. 13 C 8) 11 2 Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge Fig. 14 Arrhenius (2) e As n exp (Q/RT) (2) R Q Fig. 14 Q Q 4950 kj/mol Sn 174 Vol. 9 No. 3 (2006)

(102 kj/mol) 1/2 Sn 5),9)12) 3.3 Fig. 15 SEM b-sn Ag 3 Sn/Cu 6 Sn 5 b-sn 13) Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge b-sn Fig. 16 125 C 180200 Fig. 16(a)(c) Sn 3.0Ag 0.5Cu NiGe Sn 3.5Ag 0.5Cu Ni Ge Fig. 16(b)(d) 125 C 200 Fig. 14 Arrhenius plots of strain rate and reciprocal temperature Sn 3.0Ag 0.5Cu 0.5 mm mm Sn 3.5Ag 0.5Cu Ni Ge 0.5 mm 14),15) Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge Sn 3.5Ag 0.5Cu Ni Ge (125 C)Sn 3.0Ag 0.5Cu b-sn Sn 3.5Ag 0.5Cu Ni Ge 3.4 3 Sn 3.5Ag 0.5Cu Ni Ni X Fig. 17 Ni X Ni Cu 6 Sn 5 (110) Ni 0.25% Ni 3 Sn 2 (110) Table 4 Ni 2q (3) Bragg d Fig. 15 Microstructure of the lead-free solders Vol. 9 No. 3 (2006) 175

Fig. 16 Microstructures of the Sn 3.0Ag 0.5Cu solder and the Sn 3.5Ag 0.5Cu Ni Ge solder Table 4. The plane intervals (d) calculated by measured diffraction angle (2q) Amount of Ni addition (wt%) 2q ( ) d (Å) 0 42.97 2.104 0.07 43.27 2.090 0.1 43.36 2.086 0.25 43.54 2.078 Fig. 17 Relation between amount of Ni content, and X- ray diffraction peak near to Sn (220) peak 2d sinqnl (3) l X Cu K a ; l1.54056 Åd q n Sn Ag Cu Ni Cu 6 Sn 5 (Cu,Ni) 6 Sn 5 16),17) Cu 2.556 Å Ni 2.492 Å 18) Cu 6 Sn 5 Cu Ni (TEM) Fig. 18(a)(b)Sn 3.5Ag 0.5Cu Ni Ge TEM Fig. 18(a) b- Sn 0.10.2 mm Fig. 18(b) 0.40.6 mm 176 Vol. 9 No. 3 (2006)

Fig. 18 TEM micrograph of the Sn 3.5Ag 0.5Cu Ni Ge solder Fig. 19 EDX mapping analyses of the Sn 3.5Ag 0.5Cu Ni Ge after creep test at 125 C for 550 h Fig. 19 AgSn CuNiSn 2 Fig. 20 TEM EDX Fig. 21 Ag 3 Sn Cu 6 Sn 5 JCPDS Fig. 21(b)Cu 6 Sn 5 (110) 2.09 Å 0.07%Ni X 4. 2 Sn Ag Cu Sn 3.0Ag 0.5CuSn 3.5Ag 0.5Cu Ni Ge 40 C 125 C 1) 40 C 75 C Sn 3.0Ag 0.5Cu Sn 3.5Ag 0.5Cu Ni Ge 125 C Sn 3.5Ag 0.5Cu Ni Ge 3 2) (125 C) Vol. 9 No. 3 (2006) 177

Fig. 20 The point analyses of particles in the Sn 3.5Ag 0.5Cu Ni Ge solder after creep test at 125 C for 550 h Fig. 21 Electronic diffraction pattern of the particles in the Sn 3.5Ag 0.5Cu Ni Ge solder after creep test at 125 C for 550 h 3) TEM 4) Sn Ag Cu Ni Cu Sn X Ni Cu 6 Sn 5 Cu (Cu, Ni) 6 Sn 5 2005.10.20-1) 7 pp. 491 496, 2001 2) M. Nagano, N. Hidaka, M. Shimoda and H. Watanabe: Effect of Germanium Content on Oxidation Prevention of Sn Ag Cu Lead-Free Solder, Proc. of PSEA04, pp. 256 261, 2004 3) Sn Ag Cu Ni Ge Vol. 8, No.6, pp. 495 501, 2005 4) 9 pp. 223 228, 2003 5) Vol. 8, No. 2, pp. 150 155, 2005 6) Sn 3.5Ag xbi Sn 3.5Ag xcu 6 pp. 281 286, 2000 7) p. 318, 2000 8) Sn Ag Bi In Pb 3 pp. 249 252, 1998 178 Vol. 9 No. 3 (2006)

9) R. J. Mccabe and M. E. Fine: Creep of Tin, Sb-Solution- Strengthened Tin, and SbSn Precipitate-Strengthened Tin, Metallurgical and Materials Transactions A, p. 1531, 2002 10) S. H. Suh, J. B. Cohen and J. Weertman: Metall. Trans. A, Vol. 14A, p. 117, 1983 11) F. A. Mohamed, K. L. Murty and J. W. Morris: Metall. Trans., Vol. 4, p. 935, 1973 12) 10 pp. 61 64, 2004 13) 9 pp. 325 330, 2003 14) N. Hidaka, M. Nagano, M. Shimoda, H. Watanabe and M. Ono: Creep Properties and Micro-structure of the Sn Ag Cu Ni Ge Lead-Free Solder Alloy, ASME, IPACK2005-73148 15) Sn Ag Cu 11 pp. 171 176, 2005 16) S. Terashima, Y. Kariya and M. Tanaka: Improvement on Thermal Fatigue Properties of Sn 1.2Ag 0.5Cu Flip Chip Interconnects by Nickel Addition, Materials Transactions, Vol. 45, No. 3, pp. 673 680, 2004 17) C. B. Lee, S. J. Suh, Y. E. Shin, C. C. Shur and S. B. Jung: The Growth Kinetics of Inter-metallic Compound Layer at the Interface between Sn 3.5Ag Base Solder and (Cu, Electroless Ni- P/Cu, Immersion Au/Ni-P/Cu) Substrate, 8th Symposium on Microjoining and Assembly Technology in Electronics, pp. 351 356, 2002 18) p. 37, 2004 Vol. 9 No. 3 (2006) 179