表題.PDF

Similar documents
66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

charpter0.PDF


JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

報告書

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

1

A

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

Gmech08.dvi

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

all.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

untitled

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

untitled

meiji_resume_1.PDF

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

4月26日民生.doc

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

Slide

Gmech08.dvi

TOP URL 1

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

橡0420報告書最終版.ppt[読み取り専用]

29

本文/110 国際競争時代のコストP21‐41

pdf

12

2016_Sum_H4_0405.ai



2007年08月号 022416/0812 会告

ε

日本内科学会雑誌第102巻第4号

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


untitled

untitled



,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

06佐々木雅哉_4C.indd


Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

85 4

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

( ) ( )

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

05Mar2001_tune.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

総研大恒星進化概要.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

TOP URL 1

Part () () Γ Part ,

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

<967B92AC B82DC82BF82C382AD82E88C7689E68F912E706466>

CG38.PDF



2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

main.dvi

7-12.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e


さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

JSP58-program


, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

2017_Eishin_Style_H01

81

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

応力とひずみ.ppt

重力方向に基づくコントローラの向き決定方法

.T.C.Y._.E..

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

73

Chap11.dvi

untitled

Transcription:

1P 94P 11 2 5 70196

Ra : : g : C : : Pr : : Nu : : h : B :

( )

DC (Bau [1])

: u = u(t) (1) 1 : u& = Raρ T cos( θ) dθ Pu (2) π 2 T T : T & = u + β + [ T (, t) T ] 2 W θ θ θ (3) -

T W 0 ( t) + Wn ( t)sin( nθ) n= 1 ( θ, t) = W (4) T ( θ, t) = n= 1 S n ( t)sin( nθ) + Cn ( t) + C ( t) cos( nθ) n (5) (4),(5) (1),(3) u& = c u p (6) c& = us c (7) s& uc s Ra[ 1+ εf ( t)] (8) =0 (6) (8) (Lorenz [3]) (Lorenz [3])

(Lorenz [3]) ( ) Lorenz equations : x& =σ( y x) (9) y& = rx y xz (10) z & = bz + xy (11)

780mm

3 l/min 15 l/min

TakadaRiken TR DIGITAL MULUTIMETER ADVANTEST R6511 DIGITAL MULTIMETER TakadaRiken TR UNIVERSAL SCANNER

YEW TYPE3056 PEN RECORDER

RIKO SLIDE TRANS TYPE RSD-10A CAP 1KVA INPUT 100V

1. 2. 3. 4. 5. 6. 7. 8. 9. 1. 2. 3. 1. 2. 3. 4. 5. 6. 7.

1. 25mm 20mm 4 2. 3. 4. 5. 6. 7. 8. 1. 2. 1. 2. 3. 4. 1. 2.

1. 2. 3. 4.

760m 10mm 10mm 3 2 1 left bottom right

5W 20 temperature( ) 19.5 19 18.5 right bottom left 18 0 2000 time(sec) 4000 Fig4.2

20W 22 temperature( ) 20 left bottom right 18 0 10000 time(sec) 20000 Fig4.3

21 30W bottom temperature( ) 20 19 left right 18 0 5000 time(sec) 10000 Fig4.4

30W 2 22 right temperature( ) 21 20 19 bottom left 0 500 1000 1500 time(sec) 2000 2500 Fig4.5

40W 22 left temperature( ) 21 20 bottom 19 right 0 2000 time(sec) 4000 Fig4.6

23 40W 22 left temperature( ) 21 20 bottom 19 right 2800 2850 2900 time(sec) 2950 3000 Fig4.7

50W 22 right temperature( ) 20 bottom left 18 0 1000 2000 time(sec) 3000 Fig4.8

55W left 22 temperature( ) 20 bottom 18 right 6000 8000 10000 time(sec) 12000 Fig4.9

60W left 22 temperature( ) 20 bottom 18 right 16500 17000 time(sec) 17500 Fig4.10

65W 24 right temperature( ) 22 20 bottom left 0 1000 time(sec) 2000 Fig4.11

65W 24 right temperature( ) 22 20 bottom left 0 1000 time(sec) 2000 Fig4.11

75W 24 temperature( ) 22 20 right bottom left 18 0 1000 2000 time(sec) 3000 Fig4.12

75W 24 temperature( ) 22 20 right bottom left 2500 2600 2700 2800 time(sec) 2900 3000 Fig4.13

100W 26 right temperature( ) 24 22 20 bottom left 18 0 5000 time(sec) 10000 Fig4.14

100W 26 right temperature( ) 24 22 20 bottom left 18 5000 5020 5040 5060 time(sec) 5080 5100 Fig4.16

200W 30 right temperature( ) 25 20 left bottom 15 0 5000 time(sec) 10000 Fig4.17

30 200W right temperature( ) 25 bottom left 20 5000 5050 5100 time(sec) 5150 5200 Fig4.18

300W 35 right temperature( ) 30 25 left bottom 20 0 5000 time(sec) 10000 Fig4.19

34 33 32 300W right temperature( ) 31 30 29 28 27 26 bottom 25 24 left 5000 5050 5100 time(sec) 5150 5200 Fig4.20

40 500W right temperature( ) 30 bottom left 20 0 500 1000 1500 time(sec) Fig4.21

500W temperature( ) 36 34 32 30 28 right bottom 26 left 1500 1520 1540 1560 time(sec) 1580 1600 Fig4.22

45 800W right 40 temperature( ) 35 bottom 30 left 25 4500 5000 5500 time(sec) Fig4.23

45 800W right 40 temperature( ) 35 bottom 30 left 25 5000 5020 5040 5060 time(sec) 5080 5100 Fig4.24

50 right 1000W 45 temperature( ) 40 35 bottom 30 left 7500 8000 8500 time(sec) 9000 9500 Fig4.25

50 1000W 45 right temperature( ) 40 35 bottom left 30 8200 8220 8240 8260 time(sec) 8280 8300 Fig4.26

23 40W temperature( ) 22.5 1 2 3 22 5000 5200 5400 5600 time(sec) 5800 6000 Fig4.27

23.5 50W temperature( ) 23 22.5 1 2 3 22 7200 7300 7400 7500 7600 time(sec) 7700 7800 Fig4.28

24 60W 1 temperature( ) 23.5 2 3 23 8200 8300 8400 time(sec) 8500 8600 Fig4.29

24 60W 1 temperature( ) 23.5 2 3 23 8600 8605 8610 8615 8620 time(sec) 8625 8630 Fig4.30

70W 24.5 1 temperature( ) 24 2 3 23.5 9350 9360 9370 9380 time(sec) 9390 9400 Fig4.31

100W 3 23 2 temperature( ) 22.5 1 22 650 660 670 time(sec) 680 Fig4.32

25 200W 3 temperature( ) 24 23 2 1 22 4780 4790 4800 time(sec) Fig4.33

400W 2 1 29 3 temperature( ) 28 27 8000 8005 8010 time(sec) 8015 8020 Fig4.34

50W 80 60 40 20 0 0 0.01 0.02 0.03 frequency(hz) 0.04 0.05 Fig4.35

50W 80 l 60 b 40 20 r 0 0 0.002 0.004 0.006 frequency(hz) 0.008 0.01 Fig4.36

200 60W 100 0 0 0.01 0.02 0.03 frequency(hz) 0.04 0.05 Fig4.37

200 60W 100 0 0 0.002 0.004 0.006 frequency(hz) 0.008 0.01 Fig4.38

200 60W b 100 r l 0 0.004 0.0045 0.005 0.0055 frequency(hz) 0.006 Fig4.39

75W 60 r 40 b 20 l 0 0 0.002 0.004 0.006 frequency(hz) 0.008 0.01 Fig4.40

[1]Haim H.Bau and YuZou Wang, Chaos: A Heat Transfer Perspective, Annual Review of Heat Transfer [2]P.Wealander, On the Oscillatory Instability of Differentially Heated Fluid loops, J.Fluid Mech.,vol29,pp.17-30,1967. [3]Edward N Lorenz, Deterministic Nonperiodic Flow, J Atmospheric Sci.,vol.20,pp.130-141,1963. [4],,

Eq: %0i*X^i (i=0-9) %00 = -1.8479980e+00 %01 = 3.9930149e+01 %02 = -4.1328144e+01 %03 = 5.9340251e+01 %04 = -4.9024381e+01 %05 = 2.4452760e+01 %06 = -7.5116225e+00 %07 = 1.3909358e+00 %08 = -1.4243317e-01 %09 = 6.1961649e-03 points = 16 <DY^2> = 3.5318749e-01 r or R = 9.9993970e-01

Eq: %0i*X^i (i=0-9) %00 = -1.9461155e+00 %01 = 4.1550069e+01 %02 = -4.6750051e+01 %03 = 6.8008546e+01 %04 = -5.6966094e+01 %05 = 2.8881059e+01 %06 = -9.0324736e+00 %07 = 1.7042503e+00 %08 = -1.7787750e-01 %09 = 7.8865420e-03 points = 16 <DY^2> = 6.9269637e-01 r or R = 9.9976801e-01

Eq: %0i*X^i (i=0-9) %00 = -1.5690623e+00 %01 = 3.8211825e+01 %02 = -3.4824079e+01 %03 = 4.7996205e+01 %04 = -3.8715110e+01 %05 = 1.9086157e+01 %06 = -5.8486854e+00 %07 = 1.0876685e+00 %08 = -1.1239379e-01 %09 = 4.9500870e-03 points = 16 <DY^2> = 4.6321706e-01 r or R = 9.9989627e-01

Eq: %0i*X^i (i=0-9) %00 = -1.3074252e+00 %01 = 3.8909362e+01 %02 = -3.8266923e+01 %03 = 5.2785700e+01 %04 = -4.2260029e+01 %05 = 2.0595215e+01 %06 = -6.2184488e+00 %07 = 1.1362574e+00 %08 = -1.1510423e-01 %09 = 4.9611412e-03 points = 16 <DY^2> = 6.0175514e-01 r or R = 9.9982493e-01

Eq: %0i*X^i (i=0-9) %00 = -1.2264890e+00 %01 = 3.8869520e+01 %02 = -4.0422917e+01 %03 = 5.8511970e+01 %04 = -4.8850561e+01 %05 = 2.4757864e+01 %06 = -7.7569956e+00 %07 = 1.4673941e+00 %08 = -1.5350239e-01 %09 = 6.8139247e-03 points = 16 <DY^2> = 7.3516569e-01 r or R = 9.9973869e-01

Eq: %0i*X^i (i=0-9) %00 = -1.6018137e+00 %01 = 4.2732137e+01 %02 = -5.3046039e+01 %03 = 7.7410200e+01 %04 = -6.4293043e+01 %05 = 3.2258913e+01 %06 = -9.9905537e+00 %07 = 1.8686273e+00 %08 = -1.9351417e-01 %09 = 8.5181228e-03 points = 16 <DY^2> = 1.4158795e-01 r or R = 9.9999031e-01

1 100 ( ) 50 0 0 1 2 3 4 (mv)

2 100 ( ) 50 0 0 1 2 3 4 (mv)

4 100 ( ) 50 0 0 1 2 3 4 (mv)

4 100 ( ) 50 0 0 1 2 3 4 (mv)

5 100 ( ) 50 0 0 1 2 3 4 (mv)

6 100 ( ) 50 0 0 1 2 3 4 (mv)

1P 94P 11 2 5 70196