Size: px
Start display at page:

Download ""

Transcription

1 論理学入門 講義ノート Copyright c 1995 by the author ll right reserved

2

3

4 [ 1] Begin at the beginning [ 2] [ 3] [ 4] 4 [ 5]

5 4 1 5

6 5 2 (Truth) (truth table) 1 and not not B and B not B and B and not or if, then and not or if, then,,, and not or if then and not ( ), B,, B 1

7 6 2 I II V I II I II 1 ( I II ) ( ) ( V ) 1 ( ) 2 (( ) ( ( ))) ( ( )) 3 UFO 4 UFO ( (UFO )) 2 4 UFO ,, B 5 ( B) ( B)) ( ) 6 ( ), B, B,,,, ( ) 21 1 or ( ) 2 If, then B

8 ( ),,,, P, Q, R,, P 1, P 2,, 1 and or not if then if and only if true false ( ) 32 ( ( )) ( ) 4, B ( B) ( B) ( B) ( B) 5 1, B,,,,,

9 8 3 (((P Q) ) ( R)) 1 P Q R 4 (P Q) 2 4 ((P Q) ) 3 ( R) 4 (((P Q) ) ( R)) (( R) ) P Q (P Q) ( P ) Q P P R Q (P (R Q)) (P R) Q ( P ) (R Q) (P R) Q P R Q P (R Q) 1 2 < < < ((P Q) ) ( R) (P Q) P Q (P Q ) ( R) Q (P Q ) R P Q R (P Q) ( R)

10 ( ) 1 (true) (true) 2 (false) (false) 3 P (true) (false) 4 B (true) (true) B (true) 5 B (true) (true) B (true) ( ) 6 (true) (false) ( ) 7 B (true) (true) B (true) (fasle) B (true) 8 B (true) B 4 8 true t false f 1 t t 2 f f 3 P t f P t f 4 2 (true) (false)

11 10 3 B B t t t t B t B t t f f t B f B f f t f f B t B f f f f f B f B f 5 B B t t t t B t B t t f t t B f B t f t t f B t B t f f f f B f B f 6 t f t f f t f t 7 B B t t t t B t B t t f f t B f B f f t t f B t B t f f t f B f B t 8 B B t t t t B t B t t f f t B f B f f t f f B t B f f f t f B f B t, 31 (1) P Q P P Q P Q P P Q P t t t f f t f f f t f t f t t f f f t t (2) R Q

12 32 11 Q R Q R Q f t t t t f t f t t f f t f f f f f f t (3) R P Q P Q R P Q R P Q t t t t t t t f t t t f t t t t f f t t f t t t t f t f t t f f t f f f f f f t 7 B B B B t t f t t f f f f t t t f f t t B B 34 ( ), = 32 1 t f t f t t 2 t f t t 3 ( B) ( B)

13 12 3 B B ( B) B B ( B) ( B) t t t f f f f t t f f t f t t t f t f t t f t t f f f t t t t t 4 ( B) ( B) B B B ( B) ( B) t t t f t t t f f f f t f t t t t t f f t t t t 31 1 ( ) 2 ( B) ( B) 3 ( ( B)) 4 ( ( B)) 32 1 ( B) ( B ) 2 ( ) B 3 ( B) 4 B ( B) 5 ( B) 6 ( B) ( B) 7 ( ( B)) 8 ( (B C)) (( B) C) 9 ( (B C)) (( B) ( C)) 33 1 B ( B) (B ) 2 B ( B) 3 B ( B)

14 P, Q, R,, P 1, P 2, P Q R P Q R (P Q) R ( ), B 1,, B n B 1,, B n P B 1,, B n P B 1,, B n B 1,, B n B i B j ( i j) ( ) ( ) B i B j 2 35 ( NK ) 0 1 (1 ) 1 ( I ) P 1 B P 2 C 1 C n P 1 D 1 D m B P 2 P 1 C 1 C n P 2 D 1 D m B 2 P 1 P 2 I P B P C 1 C n D 1 D m B B B P P 1 C 1,, C n P 2 D 1,, D m C 1,, C n, D 1,, D m I

15 ( ) ( E( ) ) B P 1 C 1,, C n P 1 P 1 C 1 C n B P 1 E( ) P P C 1 C n B E( ) P P 1 C 1,, C n 3 ( ) ( E( ) ) B P 1 C 1 C n P 1 P 1 C 1 C n B P 1 E ( ) P B P C 1 C n B B E( ) B P P 1 C 1,, C n 4 ( I ) B P 1,,,, C 1,, C n B P 1 ( ),,,, C 1,, C n,,, ( ) P 1 C 1 C n B I,, [] P B

16 33 15 P [] [] [] C 1 C n B B I B P C 1,, C n P 1,, [] [] I ( P ) P 1 ( ) [] [] ( I 1 ) P (P ) = (P 1 ) ( ) 5 ( E ) P 1 B P 2 C 1,, C n P 1 D 1,, D m B P 2 P 1 C 1 C n P 2 D 1 D m B 2 E P P C 1 C n D 1 D m B B P P 1 C 1,, C n P 2 E D 1,, D m C 1,, C n, D 1,, D m 6 ( I ) P 1,,,, B 1,, B n P 1 ( ),,,, B 1,, B n,,, ( ) P 1 B 1 B n P 1 I,, ( I ) P

17 16 3 P [] [] [] B 1 B n I P P 1,,,, B 1,, B n I,,, I B 1,, B n,, 7 ( E ) P 1 P 2 C 1,, C n P 1 D 1,, D m P 2 P 2 P 1 C 1 C n P 2 D 1 D m 2 P 1 P 2 E P P C 1 C n D 1 D m P P 1 C 1,, C n P 2 D 1,, D m C 1,, C n, D 1,, D n 8 ( ) ( I( ) ) P 1 E C 1,, C n P 1 P 1 C 1 C n P 1 I( ) P B P C 1 C n B I( ) B P P 1 C 1,, C n 9 ( )( I( ) ) B P 1 C 1,, C n P 1

18 33 17 P 1 C 1 C n B P 1 I( ) P B P C 1 C n B B I( ) B P P 1 C 1,, C n 10 ( E ) 3 (1) B P 1 (2) C P 2 (3) C P 3 (1) P 1 D 1 D n B (2) P 2 E 1 E m C (3) P 3 B B B G 1 G l C,,,, E 1,, E m P 2 B, B,, B, G 1,, G l P 3,,,, E 1,, E m,,, B, B,, B, G 1,, G l B, B,, B B ( ) 3 P 1 P 2 P 3 E P 2 P 3 B [] [B] P C D 1 D n P B [] [] [] E 1 E m C C [B] [B] [B] G 1 G l C P P 1, P 2 P 3 E I I E 1,, E m G 1,, G l B,, B,, B 11 ( E ) P 1 C 1,, C n E

19 18 3 P 1 C 1 C n P 1 E P P C 1 C n E P P 1 C 1,, C n 12 ( E ) P 1 C 1,, C n P 1 P 1 C 1 C n P 1 E P P C 1 C n E P P 1 C 1,, C n 36 ( ) 1 ( ) 1 I 2 B B B B I 2, 3 E B B E B B E 4 I B B

20 33 19 [] n B B I,n 5 E B B B B E 6 I (false) ( ) [] n I,n 7 E E 8, 9 I ( B) B B I B B I 10 E B B C C B [] n C C [B] n C E,n 11 E ( ) E 12 E E 33 ( ) 1 ( B) C B (C )

21 20 3 [( B) C] 1 [( B) C] 1 [( B) C] 1 B E E B C B E I C I B (C ) ( B) C B (C ) I,1 E E 2 ( (B C)) (B C) [( (B C)) ] 1 E [( (B C)) ] 1 (B C) B C ( (B C)) (B C) I,1 E E 3 ( B) ( B ) [] 1 [ B] 2 E [ B] 3 B E I,1 B I,3 ( B) ( B ) I,2 4 ( B) C B (C ) [( B) C] 1 [ B] 2 [] 3 C I [B] 3 B (C ) I B (C ) I B (C ) B (C ) ( B) C B (C ) I,1 E,3 [C] 2 C I B (C ) I E,2 5 ( B) C ( C) (B C) [( B) C] 1 [ B] 2 [ B] 2 E E B [C] 2 [C] 2 C I B C I C I B C I I ( C) (B C) ( C) (B C) I ( C) (B C) ( B) C ( C) (B C) I,1 E,2 6 ( C) (B C) ( B) C

22 33 21 [( C) (B C)] 1 C E [( C) (B C)] 1 E B C [] 2 [B] 3 I 3 B [C] ( B) C I ( B) C I ( B) C ( B) C ( C) (B C) ( B) C I,1 E,3 [C] 2 ( B) C I E,2 7 ( B) C ( C) (B C) [( B) C] 1 B E [( B) C] 1 [( B) C] 1 [] 2 E C [B] 2 C I I C B C ( C) (B C) I ( C) (B C) I ( C) (B C) ( B) C ( C) (B C) I,1 E,2 E 8 ( C) (B C) ( B) C [ C] 2 [B C] 2 E [ C] 2 E B [B C] 2 B I E C B I C [( C) (B C)] 1 I ( B) C ( B) C E,2 ( B) C ( C) (B C) ( B) C I,1 I E 9 ( ) [] 2 [ ] 1 E I,1 I,2 10 ( ) [ ] 1 E I,1 11 ( B) ( B) [] 1 B I [ ( B)] 3 I,1 E [B] 2 B I [ ( B)] 3 B I,2 I B ( B) ( B) I,3 E

23 ( B) ( B) [ B] 3 E [B] 1 [ B] 3 B [] [ B] 2 E E,1 ( B) I,2 ( B) ( B) I,3 E E 13 ( B) ( B) [] 1 [ B] 3 E B B I [ ( B)] 2 E I,1 B I [ ( B)] 2 ( B) I,2 E B ( B) ( B) I,3 E 14 ( B) ( B) [] 2 [ ] 1 E [ B] 3 B E [B] 1 B B I,2 ( B) ( B) I,3 E,1 15 ( ( B)) [ ] 1 [ ( B)] 2 B E E I,1 E [ ] 1 E ( ( B)) I,2 37 ( ) B 1,, B n B 1,, B n

24 ( (soundness)) 32 ( (completeness)) ( B C) ( (B C)) 2 ( (B C)) ( B C) 3 ( B) (B ) 4 ( B C) (( C) (B C)) 36, B, C, on-off on-off ( ) ( ) B C (B ) ( C), B, C (Spec) ( ) B ( B) B 1

25 24 3 C B C B 2 ( ) ( ) 38 1, 2 3

26 ( 1) ( 2) ( ) ( ) 2 2 : (Proof-Normalization) B B (maximal ) ( ) B B I E B B I B E B I C [] C [B] C E B B I C [] C [B] C E [] B B I E B [] I E F

27 ( (Normalization Theorem)) β (β reduction rules) Reduction rules B B I E = B B I B E = B B I C [] C [B] C E = C B B I C [] C [B] C E = B C [] B B I E B = B [] I E = P P P ( n ) n n n P ( P n ) 1 P n 1 n 1 P 1 P 1 n P 1 P 1 P 1 n 1 < n n 34 ( (Strong Normalization Theorem)) β β ( )

28 ( B) β 23(2) ( B) B β 2 [ ( B)] 4 [] 1 B I [ ( B)] 3 I,1 E [B] 2 B I [ ( B)] 3 B ( B) B I,3 E B E ( B) I,4 B I,2 I E = [] 1 B I [ ( B)] 3 I,1 E [B] 2 B I [ ( B)] 3 B E ( B) I,3 B I,2 I E = [] 1 B I [ ( B)] 2 E I,1 ( B) I,2 310 [ ( )] 7 [] 1 [ ( )] 3 1 [ ] 2 [ ( )] 3 ( ) 3 2 [ ( )] 7 ( ) 7 [] 4 [ ( )] 6 4 [ ] 5 [ ( )] 6 ( ) 6 5

29

30 29 4 (first order predicate logic) P ( ) ( ) 1 n 1 ( ) ( ) ( ) ( ) x y L(x, y) L(, ) L(, ) x

31 30 4 x L(x, ) x L(x, ) x x x x xl(x, ) xl(x, ) 41 ( ) x, y, z,, x 1, x 2, c 1, c 2, c 3,,,,, 1 ( ) P ( ), Q(, ), R(,, ), ( ),, (, ), 2 n- S(,, ) }{{} n ( (universal quantifier) ), ( (existential quantifier) ) 3 s, t, t 0, t 1, t 2, 42 ( ( )) 1 S(,, ) n- t 1,, t n S(t 1,, t n ) (atomic formula) ( ) 2 B ( B) ( B) ( B) 3 ( ) 4 x ( x) ( x) 4 ( ) ( ) 1 2 P (x) x P Q(x, y) x y Q (x) x (x, y) x y 3 x x for all x x x for some x 4 P ( ) Q(x, y) (x) x (x) < <

32 31 ( xb) ( xb) B x ( x ) B x x x x x x x( x) B B x x x x( x) x( x) x ( ) (bound variable) (free variable) P (, x, y) xp (, x, y) x y xp (, x, y) zp (, z, y) x z x z B y (, y) x y (x, y) 1 y( Q(c 1, y) xp (x, y)) 1 (, y) 4 y (, y) 1 (x, y) 4 y (x, y) 4 x y (x, y) 1 Q(c 1, y), P (x, y) 3 Q(c 1, y) 4 xp (x, y) 2 Q(c 1, y) xp (x, y) 4 y( Q(c 1, y) xp (x, y)) y( xp (x, y) Q(y, x)) 3 y ( xp (x, y) Q(y, x)) 1 y (, y) y (, y) x (x, ) x y (x, y) y x (x, y)

33 32 4 y xp (x, y) Q(y, x) x P (x, y) P (x, y) y Q(y, x) y y P (x, y) x x Q(y, x) x y x z w z( wp (w, z) Q(z, x)) 3 y( xp (x, y) Q(y, x)) z ( wp (w, z) Q(z, x)) x w z( wp (w, z) Q(z, w)) 1 y x z z ( zp (z, z) Q(z, x)) 2 x w y x x ( wp (w, x) Q(x, x))

34 I }Πx (x) x(x) ( ) 2 x (x) Π(x) (open assumption) [B(x)] 1 C(x) B(x) C(x) ( I 1) x(b(x) C(x)) ( I) (41) B(x) C(x) (x) x B(x) C(x) x x Πx B(x) C(x) B(x) -I [B(x)] 1 x -I x(b(x) C(x)) [B(x)] 1 C(x) xc(x) ( I) B(x) xc(x) ( I 1) -I B(x) C(x) xc(x) ( I) (x) C(x) x C(x) x C(x) Πx B(x) 1 B(x) x B(x) -I 2 t y 1 -I x -I x (42)

35 34 4 C(x) yc(y) (42) B(x) x C(x) x (41) x(b(x) C(x)) (42) B(x) xc(x) x (x) xc(x) -I 2 B(x) xc(x) x x 1 -I (41) x x x x C(x) x xc(x) -I -I -I -I Ḍ Ḍ Ḍ Ḍ F (c 1 ) F (c 2 ) F (c 3 ) F (c i ) F (c 1 ) F (c 2 ) F (c 3 ) F (c i ) ( I) D F (c i ) c i D F (c 1 ), D F (c 2 ), x D F (x) F (c 1 ) F (c 2 ) F (c 3 ) xf (x) -I x F xf (x) E x(x) (t) t (first order term) x, y x y(y > x) y(y > x) x y(y > x) x(x > x) ( E) ( E) (43) (44)

36 41 35 (43) x y 3 (44) (44) -I t (t) I E (t) x(x) t (first order term) x(x) D (x) D ( ) (i) D x (ii) (x) -I ( ) 4 1 x 1 x D x x 1 C x 1 x C -E -E -E F (c 1 ) F (c 2 ) F (c i ) D F (c 1 ) D F (c 2 ) D F (c i ) D F (c 1 ) D,, F (c i ) D, x F (x) D F (c 1 ) F (c 2 ) F (c i ) xf (x) -E -E -E [ xf (x, b)] 1 ( E) F (a, b) y xf (x, y) yf (a, y) ( I) ( E 1 ) yf (a, y) x(x) y xf (x, y) (x) xf (x, b) D yf (a, y) x xf (x, b) b 3 x 2 4 (x) x D (x)

37 36 4 b yf (a, y) (i) yf (a, y) yf (a, y) b (ii) xl(x, ) [L(x, )] 1 yl(x, y) H(x) x( yl(x, y) H(x)) ( I) ( I) yl(x, y) H(x) ( E) H(x) ( E 1 ) L(x, y) x y H(x) x y( xl(y, x) H(y)) xl(x, )( 1 ) 5 x H(x)(x ) 6 (i) D H(x) x x 1 x x (i) (ii) xl(x, ) [L(x, )] 1 yl(x, y) zp (z) ( I) yl(x, y) P (x) P (x) zp (z) ( I) ( E 1 ) ( E) P (x) x yl(x, y) P (x) x x (ii) xl(x)( 1 ) P (x)( x ) x x x x (ii) 41 ( ) 1 x(x) x (x) 5 x x 6 x xl(x, ) x!

38 41 37 [ (x)] 1 x (x) I [ x (x)] 2 (x) I,1 E E (x) x(x) I [ x(x)] 3 x (x) I,2 E x (x) x(x) x (x) I,3 E 2 x y(x, y) x y (x, y) [ y(x, y)] 1 x y(x, y) I [ x y(x, y)] 2 E y(x, y) I,1 [(x, y)] 3 E y(x, y) y(x, y) I [ y(x, y)] 4 x y(x, y) I [ x y(x, y)] 5 E (x, y) I,3 x y(x, y) I,2 y (x, y) I E x y(x, y) x y (x, y) I E,4 x y (x, y) x y(x, y) x y (x, y) I, x (x) x(x) 2 x y (x, y) x y(x, y) 3 x (x) x(x) 4 x y(x, y) x y (x, y) 5 x(x) yb(x) z((z) B(z)) 6 x((x) B(x)) x(x) xb(x) 7 x((x) B(x)) x(x) xb(x) 8 x y((x) B(y)) ( x(x) yb(y)) 9 x y((x) B(y)) ( x(x) yb(y)) E

39 ( ) (Denotational semantics) t f t f t f t f ( ) ( D ) ( ) {t, f} ( ) ( ) D D ( ) 1 D 2 D D 3 1 P ( ) D P ( ) D 1 2 P (,, ) 3 (three place predicate symbol) P (,, ) D D D 4 7 P (c) c( c) (D ) P (D ) P (c) P (c) P (c 1, c 2, c 3 ) 5 P (x) ( x ) x a( a D ) P (x) (P (x)[a] ) P (x)[a] a P (D ) P (x 1, c 1, x 2 ) P (x 1, c 1, x 2 )[a, b] 6 B B B ( ) x 1,, x n a 1,, a n ( D) 7 x(y 1,, y n, x)[a 1,, a n ] ( y 1,, y n, x a 1,, a n y 1,, y n ) x(y 1,, y n )[a 1,, a n ] D b (y 1,, y n, x)[a 1,, a n, b] 7

40 x(y 1,, y n )[a 1,, a n ] D b (y 1,, y n, x)[a 1,, a n, b] (model) 43 ( ) D, φ D φ 1 c φ(c) D φ(c) c D c φ(c) c 2 n P (,,, ) }{{} n φ(p ) D D D }{{} n P (P P ) D, φ (x 1,, x n ) ( x 1,, x n ) x 1,, x n a 1,, a n ( D) (x 1,, x n ) a 1,, a n ( ) φ((x 1,, x n )[a 1,, a n ]) φ((x 1,, x n )[a 1,, a n ]) = t (x 1,, x n ) D, φ a 1,, a n D, φ = (x 1,, x n )[a 1,, a n ] D, φ = 44 ((x 1,, x n ) a 1,, a n ( )) 1 (x 1,, x n ) n- P (x 1,, x n ) P (x 1,, x n ) D, φ = P (x 1,, x n )[a 1,, a n ] a 1,, a n φ(p ) 2 (x 1,, x n ) B(x 1,, x n ) C(x 1,, x n ) D, φ = (B(x 1,, x n ) C(x 1,, x n ))[a 1,, a n ] D, φ = B(x 1,, x n )[a 1,, a n ] D, φ = C(x 1,, x n )[a 1,, a n ] 3 (x 1,, x n ) B(x 1,, x n ) C(x 1,, x n ) D, φ = (B(x 1,, x n ) C(x 1,, x n ))[a 1,, a n ] D, φ = B(x 1,, x n )[a 1,, a n ] D, φ = C(x 1,, x n )[a 1,, a n ] 4 (x 1,, x n ) B(x 1,, x n ) D, φ = B(x 1,, x n ) D, φ = B(x 1,, x n )[a 1,, a n ] ( D, φ = B(x 1,, x n )[a 1,, a n ] ) 8 5 (x 1,, x n ) yb(x 1,, x n, y) D, φ = yb(x 1,, x n, y) D b ( b D) D, φ = B(x 1,, x n, y)[a 1,, a n, b] 8 B B

41 (x 1,, x n ) yb(x 1,, x n, y) D, φ = yb(x 1,, x n, y) D b( b D) D, φ = B(x 1,, x n, y)[a 1,, a n, b] 42 D { } 5 ( ) (x) (x ) φ φ( ) = φ( ) = φ( ) = φ( ) = φ φ( ) = 4 D ( ) φ( ) = D φ( ) φ( ) = {, } D D, φ = ( ) ( D, φ ) D, φ =/ ( ) ( D, φ ) D, φ =/ ( ) ( D, φ ) ( )

42 42 41 ( ) ( ) ( ) (x) D 44 D, φ = (x)[ ] ( ) D, φ =/ (x)[ ] ( ) D, φ = (x)[ ] ( ) D, φ D φ D, φ = (valid) = D x(x) D, φ = x(x) D a D, φ = (x)[a] x(x) D, φ = x(x) D a D, φ = (x)[a] D D x (x) D x (x) D Man( ) x(man(x) (x)) x(man(x) (x)) ( ) x y x(man(x) (x)) x(man(x) (x)) x(x) x(x) 45 ( ) α, β, γ,, α 1, α 2, α α x α, y α, z α, x α 1, x α 2, α c α 1, c α 2, n- α 1,, α n n- P α1,,αn (,, ) }{{} n

43 42 4 P α 1,,α n (,, ) n- t 1,, t n α 1,, α n P α 1,,α n (t 1,, t n ) ( ) n α 1,, α n ( ) D, φ D α1,, D αn, φ D αi α i ( α i ) α i c α i φ(c α i ) D αi α i x α i a a D αi α 1,, α n n P α 1,,α n (,, ) }{{} n φ(p α 1,,α n (,, )) D }{{} α1 D αn n 41 ( (Completeness thorem)) = ( ) ( ) 42 < D, φ > = ( ) ( ) < D, φ > = ( ) ( ) < D, φ > = ( ( ) ( )) < D, φ > = x( (x)) < D, φ > = x( (x)) ( ) 44 1 x (x)

44 x( (x) (x)) 3 x (x) 4 x( (x) (x)) ( ) x (x) 45 1, ( 1) ( 2) ( ) 46 1 x( yl(x, y) H(x)) 2 y( xl(x, y) B(y)) 3 y(b(y) xl(x, y))

45 xb(x) y H(y) ( 1) x( yl(y, x) yl(x, y)) y(b(y) H(y)) ( 2) xbx x( yl(y, x) y L(x, y)) ( ) x( (x) (x)) 2 x( (x) (x)) 3 x( (x) (x)) ( ) x (x) 49 1 x( (x) (x)) 2 x( (x) (x)) 3 x (x) ( ) x( (x) (x))

46 ( ) ( ) (1) ( ) (2) ( ) (3) ( ) (1) (2) (3) (1) (2) (3) ( ) ( ) 51 ( ) (1) (1 ) (1 ) (2) (3) (1 ) ( ) ( ) ) ( ) ( [ ] 1 ( ) ( ) E I 1 E E

47 46 5 ( ) (1) (2) (3) (1) (2) (3) ( ) ((1) (2) (3) ) = ((1) (2) (3) ) (1) (2) (3) (1) (2) (3) (counter-model) (1) (2) (3) 1 ( ) 1 (1) (2) (3) (1) (2) (3) (1) (2) (1) (2) (3) (i) t t t f f f t (ii) t f f f t f t (iii) f t t t f t f (iv) f f t t t t t (i) (iv) (1) (2) (3) (i) (1) (2) (3) (1) (2) (iii) (iv) (1) (2) (3) (iii) (iii) ( ) ( ) (1) (2) {(1), (2), (3)} ( ) 2 1 (1) (2) (3) ( ) ( ) 2 ( )

48 babababababababababababababababababababab ( ) (B ) (C ) (D ) (E ) ( ) B ( ) D E C B E D ( ) D? ( ) x x x x y (x) (x) (x) (x) (x, y) 1 () (B) (C) (D) (E) 2 () 3 (B) 4 (D) 5 (E)

49 x( (x) (x)) 7 x( (x) (x)) 8 x( (x) (x)) 9 (D, ) 10 (B, E) 11 (, C) 12 x( (x) (x)) 13 x y( (x) (x, y) (y)) 14 x( (x) (x)) 15 (D) 7 8 ( ) x (x) x (x) 2 15 x (x) 1 x (x)? 2 15 x (x) x (x) 2 15 x (x) 2 15 x (x) ( ) ( ) Γ Γ 53 ( ) x (x) 2 15 x (x) ( ) 2 15 x (x) 2 15 x (x) 54 x (x) x (x)!

50 x (x) ( ) 1 (a) x (x) 1 15 (b) () (C) (D) (c) E B (E) (B) (d) 1 15 E (E) (E) 56 (a) (b) imformal 57 (c) (d) 1 15 (d) ϕ 58 (E) (E) ( (E) (E) ) (a) (b) B E E 1 ( ) B E B (E ) 1 ( ) 16 x y( (x) (y) x y) = 2 = B E 17 B = E

51 (E) 51 ( ) (reflexivity) x(x = x) 1 (commmutativity) s = t t = s 2 (transitivity) s = t t = u s = u 3 s = t (t) (s) s t ( )

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))

U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z)))) 4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):

More information

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P Advent Calendar 2018 @Fukuso Sutaro,,, ( ) Davidson, 5, 1 (quantification) (open sentence) 1,,,,,, 1 1 (propositional logic) (truth value) (proposition) (sentence) 2 (2-valued logic) 2, true false (truth

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s,

1. (Naturau Deduction System, N-system) 1.1,,,,, n- R t 1,..., t n Rt 1... t n atomic formula : x, y, z, u, v, w,... : f, g, h,... : c, d,... : t, s, 1 (Naturau Deduction System, N-system) 11,,,,, n- R t 1,, t n Rt 1 t n atomic formula : x, y, z, u, v, w, : f, g, h, : c, d, : t, s, r, : P, Q, : R, : A, B, C, D, 12 A A A A N-system 1 1 N-system N-system

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

=

= 2. 2.1 2.2 kuri@ice.uec.ac.jp ( 2007/10/30/16:46) 1 . 1. 1 + 2 = 5. 2. 180. 3. 3 3. 4.. 5.. 2 2.1 1.,,,,. 2., ( ) ( ).,,,, 3.,. 4.,,,. 3 1.,. 1. 1 + 2 = 5. (, ) 2. 180. (, ) 3. 3, 3. (, ) 4.. (, ) 5..

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点 09 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F K, L) = AK α L β 5) と定義します. ) F KK, F KL, F LK, F LL を求めましょう. ) 第 象限のすべての点 K, L) R ++ に対して F KK K, L) < 0, かつ dethf )K, L) > 0 6) を満たす α,

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

Copyright c 2006 Zhenjiang Hu, All Right Reserved.

Copyright c 2006 Zhenjiang Hu, All Right Reserved. 1 2006 Copyright c 2006 Zhenjiang Hu, All Right Reserved. 2 ( ) 3 (T 1, T 2 ) T 1 T 2 (17.3, 3) :: (Float, Int) (3, 6) :: (Int, Int) (True, (+)) :: (Bool, Int Int Int) 4 (, ) (, ) :: a b (a, b) (,) x y

More information

A_chapter3.dvi

A_chapter3.dvi : a b c d 2: x x y y 3: x y w 3.. 3.2 2. 3.3 3. 3.4 (x, y,, w) = (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, ) xȳw (,,, )xȳw (,,, ) xyw, F F = xy w x w xy w xy w

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1

koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 http://www.kb.ecei.tohoku.ac.jp/ koba/class/soft-kiso/ 1 λ if λx.λy.y false 0 λ typed λ-calculus λ λ 1.1 λ 1.1.1 λ, syntax τ (types) ::= b τ 1 τ 2 τ 1 τ 2 M (terms) ::= c τ x M 1 M 2 λx : τ.m (M 1,M 2

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

Microsoft PowerPoint - logic ppt [互換モード]

Microsoft PowerPoint - logic ppt [互換モード] 述語論理と ( 全称 ) ( 存在 ) 回の講義の概観 : 命題論理 ( 真理値 ) 2 述語論理 ( モデルと解釈 ) 意味論 semantics 命題論理 ( 公理と推論規則 ) 述語論理 ( 公理と推論規則 ) syntax 構文論 preview 述語論理は命題論理よりも複雑 例題 : 次の文は真か偽か? ( 曖昧な文です ) すべての自然数 x に対して x < y を満たすような自然数

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n )

. T ::= x f n t 1 t n F n,m (x(t 1 t n )t 1 t m) x, f n n, F n,m n, m-., F n,m (x(t 1 t n )t 1 t m), x, t 1,..., t n, t 1,..., t m. F n,m (x(t 1 t n ) Kazuki Nakamura Department of Mathematical and Computing Science, Tokyo Institute of Technology * 1 Kashima Ryo Department of Mathematical and Computing Science, Tokyo Institute of Technology 1,,., Σ,..,.

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional 1 1.1 semantics F 1 x, y, z,... F 1. F 38 2016 9 1 (oolean) Functional 2. T F F 3. P F (not P ) F 4. P 1 P 2 F (P 1 and P 2 ) F 5. x P 1 P 2 F (let x be P 1 in P 2 ) F 6. F syntax F (let x be (T and y)

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

Ⅴ 古陶器にみる装飾技法

Ⅴ 古陶器にみる装飾技法 中 小 企 業 総 合 事 業 団 情 報 技 術 部 12 2 105-8453 TEL 03-5470-1523 FAX 03-5470-1526 Copyright 2000 All right reserved 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 -1- 3 4 34 22.5 880 9208 12 1300

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Tricorn

Tricorn Triorn 016 3 1 Mandelbrot Triorn Mandelbrot Robert L DevaneyAn introdution to haoti dynamial Systems Addison-Wesley, 1989 Triorn 1 W.D.Crowe, R.Hasson, P.J.Rippon, P.E.D.Strain- Clark, On the struture

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

CG38.PDF

CG38.PDF ............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

ハピタス のコピー.pages

ハピタス のコピー.pages Copyright (C) All Rights Reserved. 10 12,500 () ( ) ()() 1 : 2 : 3 : 2 4 : 5 : Copyright (C) All Rights Reserved. Copyright (C) All Rights Reserved. Copyright (C) All Rights Reserved. Copyright (C) All

More information

Copyright 2008 All Rights Reserved 2

Copyright 2008 All Rights Reserved 2 Copyright 2008 All Rights Reserved 1 Copyright 2008 All Rights Reserved 2 Copyright 2008 All Rights Reserved 3 Copyright 2008 All Rights Reserved 4 Copyright 2008 All Rights Reserved 5 Copyright 2008 All

More information