PowerPoint プレゼンテーション
|
|
|
- あゆみ くだら
- 7 years ago
- Views:
Transcription
1 本講義の課題 1. 大気 海洋 ( どちらか もしくは両方 ) の観測データや客観解析データなどに関するデータ解析の論文をレビューし その研究で用いられている解析方法について詳しく説明せよ その研究の結論と関連付けて 採用されている解析方法が適当であるかどうか 理由を述べて議論すること 2. レビューした論文を自分なりにどのように発展させるかを考えてみよ 解析の視点や方法 新たに扱う資料など 発展の方針について説明せよ を実際に行ってみよ 図などを用いて結果を説明し それに対して議論を加えよ レポートは A4 用紙に自由な形式で用意し 大海気候コース事務室 (C308) に 8 月 20 日 ( 月 )17 時までに提出すること レ ポートは返却しないので 必要な場合はコピーをとること 1
2 取り扱う論文については自分で適宜判断するものとするが 指導教員にアドバイスを受けるのもよい 特に良い論文が見当たらない場合には 下記のサイトにいくつかの論文をおいておくので 参考としてもよい tc/dataan2012/papersample/index.html 2
3 6. 多変量解析 (Multi-variate analysis) 6.1 EOF 解析とは? What is EOF? 身近なイメージ An everyday example 6.2 EOF 解析の方法 6.3 EOF 解析の実例 Method Applications (1)AO/AAO (2)Air-sea interaction in the South Atlantic North の経験則 North s Rule-of-Thumb 6.4 EOF 解析の応用 CEOF 6.5 SVD 解析 6.6 SVD 解析の実例 (1)Air-sea interaction in the South Atlantic Extensions Singular Value Decomposition Applications
4 6.1 EOF 解析とは? EOF 経験的直交関数解析 Empirical Orthogonal Function analysis PCA 主成分解析 Principle Component Analysis PCA データを眺める軸を変えて 主要な特徴 = モードを抽出する方法 Regress
5 生徒 30 人の 3 教科での得点分布
6 散布図 (property property plot) 80 eg 数学 - 英語 mt 国語 - 数学 mt eg 国語 - 英語 jp jp 特徴は?
7 評価に用いる軸を変換する 主成分 もっともバラつくように新しい軸を定める できるやつはできるモード 文系理系モード 国際派モード 第一主成分第二主成分 第三主成分 主軸変換 それぞれのモードは規格化されている
8 2 つの教科で考えると 第二モード 第一モード 教科の数だけモード 経験的 な直交座標系で表現 主成分を求めることは 共分散行列の固有ベクトルを求めることに等しい!
9 6.2 EOF 解析の方法 データ行列 時間 空間 t: transpose 最も分散の大きくなるよう新たにこれらを求めたい
10 時間関数の直交性 λ m1 はモード m 1 のもつ分散 空間関数の直交性と正規性 x
11 ( 時系列の共分散を要素とする ) 実対称行列 symmetric 時間関数の直交性から ( )
12 空間関数が規格化 直交性から 全分散は保存する 共分散行列の固有値問題に帰着される 固有値の大きいモードが多くの分散を説明する
13 30 人の得点分布の例 総分散の保存 = 変動の損失なし第一モード 81.3% 第二モード 16.8% 第三モード 2.0%
14 生徒 30 人の 3 教科での得点分布 -1 3? 1 1 2?
15 EOF 解析の手順 データを読み込み行列で表現する ( 場合によっては各点で正規化する ) 共分散行列を求める 共分散行列を固有値展開し ( 通常統計パッケージを使用 ) 固有値 固有ベクトルを求める 固有値の大きい順から並べる 寄与率を求める 各モードの時間関数を求める 結果をファイルに保存する 図化する
16 EOF 解析の特徴 EOF の空間構造 時間構造のモードは互いに直交する 分散が大きいモードほどより多くの変動成分を説明する EOF を共分散行列に対して求める場合と相関行列に対して求める場合がある 得られるモードは定在的パターン 伝播するパターンをモードとして抽出するには不向き EOF で得られた主要なモードが物理的な根拠をもったモードであるとは限らない
17 2006 年夏の天候不順 夏の北極振動正 オホーツク高気圧発達 冷たく湿った海風 ( 北東風 ) 曇りがちで日照不足冷夏
18 6.3 EOF 解析の実例 空間関数 AO / AAO ( 時間関数 )
19 1. Arctic / Antarctic Oscillation (AO/AAO) Monthly mean 1000-hPa (700-hPa) height anomalies poleward of 20 latitude for the Northern (Southern) Hemisphere. The NCEP/NCAR reanalysis dataset was employed at a horizontal resolution of (lat,lon)=(2.5 X2.5 ) for the period 1979 to データは3 次元だが位置と時間に To ensure equal area weighting for the covariance matrix, the gridded data is weighted by the square root of the cosine of latitude. Daily and monthly AO (AAO) indices are constructed by projecting the daily and monthly mean 1000-hPa (700- hpa) height anomalies onto the leading EOF mode. Both time series are normalized by the standard deviation of the monthly index ( period). 正確には時間関数ではない ( 最少二乗フィット )
20 The "high index" of the AO is defined as periods of below normal Arctic SLP, enhanced surface westerlies in the north Atlantic, and warmer and wetter than normal conditions in northern Europe.
21 low index" of the AO
22 North s Rule-of-Thumb ノースの経験則 寄与率が近いモードは独立なデータ数が少ない場合うまく分離できない North et al.(1982) Mon.Wea. Rev
23 第 1 モード 経験則に基づく λ 第 2 モード 2 λ で 95% 第 3 モード 第 4 モード
24 N=1000 の場合 14.02± ±1.10 ここは分離可能 10.67± ±0.91 ここは分離不能 Effective Sampling Size もあり 実際には
25 N=300 の場合 14.02± ± ± ±1.67 分離不能
26 EOF 解析のまとめ 卓越する空間パターンの抽出には EOF 解析 ( とその仲間たち ) がよく用いられる EOF では変動をよく説明する 軸 を見出す EOF 解析は 共分散行列の固有値問題として理解できる 固有ベクトルは空間モードに 固有値はそのモードの寄与率に対応する モードの統計的な卓越性は力学的な背景を保障しない
27 CEOF 解析 Z=X * T Z は複素化した時系列 X T も複素数 複素化にはヒルベルト変換 ( フーリエ展開して位相を 90 度進ませた関数を虚部とする ) を用いる X の位相は時間的に一定でも T の位相が時間的に変化するため各モードの位相は時間的に変化する 伝播する信号を表現することができる
28 CEOF 解析の例 SST の十年規模変動 Latif and Barnett (1994) Science
29 CEOF 解析の例 2.5 years 10 years rotates clockwise, reminiscent of the general gyral circulation 第一モード 33% 約 20 年周期 Latif and Barnett (1994) Science
30 6.4 特異値分解解析 SVD(Singular Value Decomposition) 異なる二つの物理量の関係を見出す手法 To extract the dominant spatial pattern which Was cross-correlated between two different fields. covariance function cross-covariance function orthogonal
31 Diagonal matrix Singular value Singular vectors 各モードで互いに関連
32 2. Air-sea interaction in the South Atlantic Ocean SVD 1st SVD 2nd SST SLP SST EOF 1st SLP EOF 1st Sterl, A., and W. Hazeleger, 2003: Coupled variability and air-sea interaction in the South Atlantic Ocean. Clim. Dyn., 21 (7/8),
33 time SST/Wind 偏差の SST SVD 主成分に対するラグ回帰 dt<0 Built-up phase SST/wind 関係あり = 風が冷やした? U>0 Destruction phase time SST/wind 関係弱 Contour: SLP Arrow :wind Color: SST Cool SST/strong wind
34 EOF SVD 解析のまとめ 卓越する空間パターンの抽出には EOF 解析 ( とその仲間たち ) がよく用いられる EOF では変動をよく説明する 軸 を見出す EOF SVD 解析は 共分散行列の固有値展開 特異値分解問題として理解される 固有ベクトルは空間モードに 固有値はそのモードの強さに対応する モードの統計的な卓越性は力学的な背景を保障しない
Microsoft PowerPoint - 統計科学研究所_R_主成分分析.ppt
主成分分析 1 内容 主成分分析 主成分分析について 成績データの解析 R で主成分分析 相関行列による主成分分析 寄与率 累積寄与率 因子負荷量 主成分得点 2 主成分分析 3 次元の縮小と主成分分析 主成分分析 次元の縮小に関する手法 次元の縮小 国語 数学 理科 社会 英語の総合点 5 次元データから1 次元データへの縮約 体形評価 : BMI (Body Mass Index) 判定肥満度の判定方法の1つで
PowerPoint Presentation
. カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析
Microsoft PowerPoint - H17-5時限(パターン認識).ppt
パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
多次元レーザー分光で探る凝縮分子系の超高速動力学
波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 [email protected] ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =
-1-5. EOF EOF EOF EOF (REOF) EOF Matlab EOF EOF
-- 5. EOF... 5..... 5.2....2 5.3. EOF...3 5.4. EOF...6 5.5. EOF (REOF)...6 5.6. EOF Matlab...7 5.6.....8 5.6.2....8 5.7. EOF EOF...9 5.8....9 5.8.....9 5.8.2....0 5.8.3. Dual foralis...0 5.8.4.... 5.8.5....
0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい
主成分分析 -因子分析との比較-
主成分分析 - 因子分析との比較 - 2013.7.10. 心理データ解析演習 M1 枡田恵 主成分分析とは 主成分分析は 多変量データに共通な成分を探って 一種の合成変数 ( 主成分 ) を作り出すもの * 主成分はデータを新しい視点でみるための新しい軸 主成分分析の目的 : 情報を縮約すること ( データを合成変数 ( 主成分 ) に総合化 ) 因子分析の目的 : 共通因子を見つけること ( データを潜在因子に分解
テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]
Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
Ecel 演習問題 Work Shee 解答 第 章 Ecel 演習問題 WorkShee 解答 問題 - 4 8 7 転置行列 4 8 7 TRANSPOSE( ) 問題 - X.6 4 4.8 8 4.9 6. 7 48 8. X 転置行列 4 8 7 4 6 48 TRANSPOSE( ).6 4.8.9. 8. 問題 -.6 4 4.8 8 y.9. 7 8. 転置行列 4 8 7 TRANSPOSE(
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
因子分析
因子分析 心理データ解析演習 M1 枡田恵 2013.6.5. 1 因子分析とは 因子分析とは ある観測された変数 ( 質問項目への回答など ) が どのような潜在的な変数 ( 観測されない 仮定された変数 ) から影響を受けているかを探る手法 多変量解析の手法の一つ 複数の変数の関係性をもとにした構造を探る際によく用いられる 2 因子分析とは 探索的因子分析 - 多くの観測変数間に見られる複雑な相関関係が
Microsoft PowerPoint - 三次元座標測定 ppt
冗長座標測定機 ()( 三次元座標計測 ( 第 9 回 ) 5 年度大学院講義 6 年 月 7 日 冗長性を持つ 次元座標測定機 次元 辺測量 : 冗長性を出すために つのレーザトラッカを配置し, キャッツアイまでの距離から座標を測定する つのカメラ ( 次元的なカメラ ) とレーザスキャナ : つの角度測定システムによる座標測定 つの回転関節による 次元 自由度多関節機構 高増潔東京大学工学系研究科精密機械工学専攻
PowerPoint プレゼンテーション
復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0
SAP11_03
第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
09.pptx
講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.
050920_society_kmiz.odp
1 リアルタイム伝搬測定にもとづく MIMO 固有モード間相関解析 Correlation Analysis of MIMO Eigenmodes Based on Real-Time Channel Measurement 水谷慶阪口啓高田潤一荒木純道 Kei Mizutani Kei Sakaguchi Jun-ichi Takada Kiyomichi Araki 東京工業大学 発表内容 研究背景
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part
画像処理工学
画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
スライド 1
データ解析特論第 1 回 ~( 全 15 回 ) 2014 年 4 月 10 日 ( 木 ) 情報エレクトロニクス専攻横田孝義 1 を先に集中してやります 2 を勉強します 3 データマイニングの分野ではマクロ ( 巨視的 ) な視点で全体を捉える能力が求められる 1. コンピュータは数値の集合として全体を把握していますので 意味ある情報として全体を見ることが不得意 2. 逆に人間には もともと空間的に全体像を捉える能力が得意
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
PowerPoint プレゼンテーション
非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
平成13年度日本分析センター年報
200 150 70 234 Bq m 3 1 148 Bq m -3 100 0 550 0 11/1 0:00 am 11/2 0:00 am 11/3 0:00 am 25 20 15 10 11/1 0:00 am 11/2 0:00 am 11/3 0:00 am 39.2 Bq m -3 11/4 0:00 am 30 990 19.3 Bq m -3 60 15.8 Bq m -3 14.1
相関係数と偏差ベクトル
相関係数と偏差ベクトル 経営統計演習の補足資料 07 年 月 9 日金沢学院大学経営情報学部藤本祥二 相関係数の復習 r = s xy s x s y = = n σ n i= σn i= n σ n i= n σ i= x i xҧ y i തy x i xҧ n σ n i= y i തy x i xҧ x i xҧ y i തy σn i= y i തy 式が長くなるので u, v の文字で偏差を表すことにする
1. 多変量解析の基本的な概念 1. 多変量解析の基本的な概念 1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 主 治 医 の 主 観 症 例 主 治 医 の 主 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のな
1.1 多変量解析の目的 人間のデータは多変量データが多いので多変量解析が有用 特性概括評価特性概括評価 症 例 治 医 の 観 症 例 治 医 の 観 単変量解析 客観的規準のある要約多変量解析 要約値 客観的規準のない要約知識 直感 知識 直感 総合的評価 考察 総合的評価 考察 単変量解析の場合 多変量解析の場合 < 表 1.1 脂質異常症患者の TC と TG と重症度 > 症例 No. TC
「統 計 数 学 3」
関数の使い方 1 関数と引数 関数の構造 関数名 ( 引数 1, 引数 2, 引数 3, ) 例 : マハラノビス距離を求める関数 mahalanobis(data,m,v) 引数名を指定して記述する場合 mahalanobis(x=data, center=m, cov=v) 2 関数についてのヘルプ 基本的な関数のヘルプの呼び出し? 関数名 例 :?mean 例 :?mahalanobis 指定できる引数を確認する関数
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,
Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523
untitled
48 B 17 4 Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, 2005 (CO 2 ) (2003) Sim-CYCLE(Ito and Oikawa, 2000) CO 2 CO 2 Figure 1 CO 2 0 (Denning et al., 1995) CO 2 (2004) Sim-CYCLE CO 2 CO 2
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i
25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R
38 2002 7 2000 9 * Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National Research Institute for Earth Science and Disaster Prevention,
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
13章 回帰分析
単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える
Microsoft Word - thesis.doc
剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル
Microsoft PowerPoint - DigitalMedia2_3b.pptx
Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (
100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM GUI
30 99 112 2006 SDAM SDAM SDAM SDAM 1950 1960 1970 SPSS SAS Microsoft Excel ArcView GIS 2002 ArcExplorer 1) MANDARA 2) GIS 2000 TNTLite 3) GIS 100 SDAM SDAM Windows2000/XP 4) SDAM TIN ESDA K G G GWR SDAM
画像類似度測定の初歩的な手法の検証
画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第
板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]
機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動
memo
数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) [email protected].~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは
各学科 課程 専攻別開設授業科目 ( 教職関係 ) 総合情報学科 ( 昼間コース ) 中学校教諭 1 種免許状 ( 数学 ) 高等学校教諭 1 種免許状 ( 数学 ) 代数学 線形代数学第一 2 線形代数学第二 2 離散数学 2 応用代数学 2 オペレーションズ リサーチ基礎 2 数論アルゴリズム
免許状取得に必要な履修科目 教育職員免許法施行規則に 左に該当する本学の 履修 高等学校教諭 高等学校教諭 中学校教諭 定める修得を要する科目 開設科目及び単位数 年次 専修免許状 1 種免許状 1 種免許状 教職の意義等に関する科目教職論 2 1 年 2 単位 2 単位 2 単位 教 教育原理 2 1 年 職 に教育の基礎理論に関する科教育心理学 2 1 年 6 単位 6 単位 6 単位 関目 す
Microsoft Word - lec_student-chp3_1-representative
1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )
線形システム応答 Linear System response
画質が異なる画像例 コントラスト劣 コントラスト優 コントラスト普 鮮鋭性 普 鮮鋭性 優 鮮鋭性 劣 粒状性 普 粒状性 劣 粒状性 優 医用画像の画質 コントラスト, 鮮鋭性, 粒状性の要因が互いに密接に関わり合って形成されている. 比 鮮鋭性 コントラスト 反 反 粒状性 増感紙 - フィルム系での 3 要因の関係 ディジタル画像処理系でもおよそ成り立つ WS u MTFu 画質に影響する因子
Microsoft PowerPoint - ip02_01.ppt [互換モード]
空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-
Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up
年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出
経営統計学
5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
Microsoft PowerPoint - CSA_B3_EX2.pptx
Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved
4.統計解析.indd
多変量解析を用いたメタボロームデータ解析 Multivariate Analysis Approach for Metabolome Data Analysis 4.1 メタボロミクスにおける多変量解析の役割 メタボロミクスにおいて 多変量解析はデータの視覚化 または回帰 判別の予測モデルの構築のために用いられている 多変量解析の手法としてよく知られ またメタボロミクスで比較的よく用いられる方法として
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
ベイズ統計入門
ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき
CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研
CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育
IPSJ SIG Technical Report Vol.2014-IOT-27 No.14 Vol.2014-SPT-11 No /10/10 1,a) 2 zabbix Consideration of a system to support understanding of f
1,a) 2 zabbix Consideration of a system to support understanding of fault occurrences based on the similarity of the time series Miyaza Nao 1,a) Masuda Hideo 2 Abstract: With the development of network
観測変数 1~5 因子負荷量 独自因子 a 独自因子 b 共通因子 1 独自因子 c 固有値 ( 因子寄与 ) 独自因子 d 共通因子 2 独自因子 e 共通性 補足説明因子負荷量 : 因子と観測変数の関係性を示す -1.00~+1.00 までの値を取り.60 以上で高く強い関係性があると言える.3
異文化言語教育評価論 IB M.S. 因子分析 1. 主成分分析と因子分析の基本的概念の違い主成分分析と因子分析は多数の変数から少数の変数を得ることを目的とした いわば標本が持つ情報を要約 説明するための探索型分析手段である 両分析は以下のようなモデルで示すことが出来る 主成分分析因子分析 観測変数 1 観測変数 1 観測変数 2 主成分 1 観測変数 2 因子 1 観測変数 3 観測変数 3 合成
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test
(J. Soc. Mat. Sci., Japan), Vol. 52, No. 11, pp. 1351-1356, Nov. 2003 Fatigue Life Prediction of Coiled Tubing by Takanori KATO*, Miyuki YAMAMOTO*, Isao SAWAGUCHI** and Tetsuo YONEZAWA*** Coiled tubings,
第6章 実験モード解析
第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法
数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数
. 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
