Chapter (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a

Size: px
Start display at page:

Download "Chapter (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a"

Transcription

1 Chapter (dynamical system) a n+1 = 2a n ; a 0 = 1. a n = 2 n f(x) = 2x a n+1 = f(a n ) a 1 = f(a 0 ), a 2 = f(f(a 0 )) a 3 = f(f(f(a 0 ))) f a 0 1

2 *1 {a n } R 0, ±1, ±2, x 1 f(x) = 2x R f (dynamical system) *2 x 0 R x 0 f 2x 0 x 0 f f(x 0 ) f 2 2 x 0 f f(f(x 0 )) f f x 0 (orbit) {a n } a 0 = 1 f f f f f n f n {f n (x 0 )} *3 f f(x) 2 f 10 (x) x 1024 Mathematica 14.2 p y = f(x) p f(p) f(f(p)) f(f(f(p)))... y = f(x) xy (p, p) (f(p), f(p)) *1 3 *2 (discrete dynamical system) *3 f n (x) f f f f(x) f(x) n {f(x)} n

3 Step 0 y = f(x) y = x Step 1 (p, p) y = f(x) (p, f(p)) Step 2 (p, f(p)) y = x (f(p), f(p)) Step 1 2 y = x p 14.1 (graphical analysis) web diagram y y = x f(p) p y = f(x) O p f(p) x 14.1 f(x) (p, p) (f 2 (p).f 2 (p)) f(x) = 2x x 0 = ±1/ Mathematica ListLinePlot Show [1] Step 0 y = f(x) = 2x y = x In[1]:= f[x_] := 2 x; gr = Plot[{f[x], x}, {x, -2, 8}, AspectRatio -> Automatic]

4 f(x) = 2x x 0 = 1/4 x 0 = 1/ Out[1]= [2] Step 1 Step 2 (p, p) (p, f(p)) (f(p), f(p)) In[2]:= tateyoko[p_] := {{p, f[p]}, {f[p], f[p]}}; [3] p n In[3]:= weblist[p_, n_] := (w = {{p, p}}; x = p; Do[(w = Join[w, tateyoko[x]]; x = f[x]), {i, 1, n}]; w); [4] In[4]:= weblist[1/2, 3] Out[4]= 1 2, 1 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4 2

5 [5] In[5]:= webdiag[p_, n_] := ListLinePlot[weblist[p, n], PlotStyle -> Thick, AspectRatio -> Automatic, PlotRange -> All]; PlotRange -> All [6] In[6]:= webdiag[1/2, 3] 4 3 Out[6]= [7] Show In[7]:= Show[gr, webdiag[1/2, 3]] Out[7]= [8] Manipulate p n In[8]:= Manipulate[Show[gr, webdiag[p, n]], {{p, 1}, -1, 4}, {{n, 3}, 0, 10, 1}]

6 6 14 p n 15 Out[8]= n 14.1 ( ) 2 g a (x) = ax(1 x) 0 a 4 [0, 1] [0, 1] Manipulate a [1] [8] a In[ ]:= g[a_, x_] := a x (1 - x); gr2[a_] := Plot[{g[a, x], x}, {x, 0, 1}, AspectRatio -> Automatic] tateyoko2[a_, p_] := {{p, g[a, p]}, {g[a, p], g[a, p]}}; weblist2[a_, p_, n_] := (w = {{p, p}}; x = p; Do[(w = Join[w, tateyoko2[a, x]]; x = g[a, x]), {i, 1, n}]; w); webdiag2[a_, p_, n_] := ListLinePlot[weblist2[a, p, n], PlotStyle -> Thick, PlotRange -> All] Manipulate[Show[gr2[a], webdiag2[a, p, n]], {{a, 3}, 0, 4}, {{p, 0.2}, 0, 1}, {{n, 5}, 0, 10, 1}]

7 a p n ( ) 1 (1) (2) y = x ListLinePlot Graphics Graphics In[ ]:= tateyoko3[p_, q_] := (pp = {p, p}; pq = {p, q}; qq = {q, q}; {Line[{pp, pq, qq}], {Red, PointSize[Medium], Point[{pp, qq}]}, {Blue, PointSize[Medium], Point[pq]} }); q g[a, p] tateyoko3 n In[ ]:= weblist3[a_, p_, n_] := ( w = {{Red, PointSize[Large], Point[{p, p}]}}; x = p; Do[(w = Join[w, tateyoko3[x, g[a, x] ]]; x = g[a, x]), {i, 1, n}]; w);

8 8 14 Manipulate In[ ]:= Manipulate[ Show[gr2[a], Graphics[weblist3[a, p, n]]], {{a, 3}, 0, 4}, {{p, 0.25}, 0, 1}, {{n, 5}, 1, 10, 1}] a p n f(x) f(x) = 0 (Newton s method) (1) y = f(x) (2) x 0 (x 0, f(x 0 )) (3) x (x 1, 0)

9 x 0 f(x) = 0 α x 1 α *4 (x 1, f(x 1 )) x 1 = x 0 f(x 0 )/f (x 0 ) N f (x) := x f(x) f (x) N f x 0 N f x1 = N f (x 0 ) Nf x 2 = Nf 2 f (x 0 ) α N f f 14.3 [9] f(x) = x f In[9]:= f[x_] = x^2-2; df[x_] = D[f[x], x]; newton[x_] = x - f[x]/df[x] *4 f C 2

10 10 14 Out[9]= x 2 x2 2 x N f (x) = x x [10] NestList x 0 = 1 x 0, x 1,..., x 5 In[10]:= app = NestList[newton, 1, 5] Out[10]= 1, 3 2, 17 12, ,, [11] 20 In[11]:= N[app, 20] //TableForm Out[11]//TableForm= TableForm [12] Sqrt[2] *5 In[12]:= N[{app, app - Sqrt[2]}, 20] //Transpose//TableForm Out[12]//TableForm= *5 Transpose[N[{app, app - Sqrt[2]}, 20]] //TableForm TableForm[N[{app, app - Sqrt[2]}, 20], TableDirections -> Row]

11 [13] In[13]:= seg[p_] := {{p, f[p]}, {newton[p], 0}}; seglist[p_, n_] := (w = {{p, 0}}; x = p; Do[ (w = Join[w, seg[x]]; x = newton[x]), {i, 1, n}]; w); seggr[p_, n_] := ListLinePlot[seglist[p, n], PlotRange -> All, PlotStyle -> Thick] gr = Plot[f[x], {x, -5, 5}]; Manipulate[ Show[gr, seggr[p, n]], {{p, 5}, -5, 5}, {{n, 3}, 1, 10, 1}] p n 20 Out[13]= p 2 p 2 * ( ) 3 g a (x) = x 3 3x + a (a > 0) Manipulate a a g a (x) = 0 *6 p 0 f

12 12 14 a p n C f(z) 1 (complex dynamics) f(z) f c (z) = z 2 + c (c C) 2 f c c C f c z fc n (z) (n ) *7 B c := {z C fc n (z) (n )} c f c (basin at infinity) B c K c := C B c *7 z 2 + c f c(z) 2 z f(z) = z 2 + c z z c (2 + c ) z c 2 z + c ( z 1) 2 z + c (1 + c ) 2 z. f n (z) 2 n z (n ) z max{2, c } f n (z) (n )

13 (filled Julia set) B c K c f c (Julia set) J c J c Mathematica * 8 c 2 z C fc k (z) 2 k fc k+n (z) n B c (k) := { z C f k c (z) 2 } B c (1) B c (2) B c = k 1 B c(k) k B c (k) B c k = 50 [14] c = i B c K c f c In[14]:= c = I; f[z_] := z^2 + c; [15] B c In[15]:= col[z_] := (p = z; k = 0; While[(Abs[p] < 2.0) && (k < 50), k) (p = f[p]; k = k + 1)]; While f k c (z) < 2 k < 50 (...) p = f[p]; k = k + 1 k *8 Mathematica C Java Mathematica C

14 14 14 fc k (z) 2 k 49 k = 50 fc k (z) < 2 col z B c 50 z K c [16] {x + yi 2 x 2, 2 y 2} d = 0.01 Table col In[16]:= d = 0.01; tab = Table[col[x + y I], {x, -2, 2, d}, {y, -2, 2, d}]; * 9 [17] tab ArrayPlot complexap (complex Array Plot ) 14.4 In[17]:= complexap[t_] := ArrayPlot[Reverse[Transpose[t]]]; * = col col 50 d

15 complexap d col tab Transpose Reverse ArrayPlot [18] tab complexap In[18]:= complexap[tab] Out[18]= col B c K c 14.4 ( ) B c ArrayPlot ColorFunction complexap In[ ]:= complexap2[t_] := ArrayPlot[Reverse[Transpose[t]], ColorFunction -> "LightTemperatureMap"]; [16] tab complexap2[tab] 14.5 c f c z = 0 f c(z) = 0 z = 0 f c z = 0 0 B c c H := {c C fc n (0) (n )}

16 ColorFunction "LightTemperatureMap" "MintColors", "WatermelonColors" "RedBlueTones". M := C H (the Mandelbrot set) * ( ) complexap2 M In[ ]:= colm[c_] := (p = 0.0; k = 0; While[(Abs[p] < 2.0) && (k < 100), (p = p^2 + c; k = k + 1)]; k) d = 0.01 In[ ]:= tabm = Table[colM[a + b I], {a, -2, 0.6, d}, {b, -1.3, 1.3, d}]; *10 K c c

17 c = 1 c = i, i c = complexap2[tabm]

18 f(z) = z 3 1 = 0 z 0 N f (z) N f (z) f f, df, newton d = 0.01; f[x_] = x^3-1; df[x_] = D[f[x], x] newton[x_] := x - f[x]/df[x]; coln[z_] := (p = z; k = 0; While[(Abs[p^3-1] > 0.1) && (k < 50), (p = newton[p]; k = k + 1)]; k) tabn = Table[colN[x + y I], {x, -2, 2, d}, {y, -2, 2, d}]; complexap2[tabn]

19 (1) R. Devaney 2 (2) 2

Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma

Chapter 3 Mathematica Mathematica e a n = ( ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n M athematica Ma Mathematica Workbook Workbook Mathematica Mathematica A4 12 A5 9 14 4 2 Chapter 3 Mathematica Mathematica e a n = ( 1 + 1 ) n b n = 1 + 1 n 1! + 1 2! + + 1 n! b n a n e 3/n b n e 2/n! b n a n b n M athematica

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel http://yktlab.cis.k.hosei.ac.jp/wiki/ 1(Plot) f x x x 1 1 x x ( )[( 1)_, ( )_, ( 3)_,...]=( ) Plot Plot f x, x, 5, 3 15 10 5 Plot[( ), {( ), ( ), ( )}] D g x x 3 x 3 Plot f x, g x, x, 10, 8 00 100 10 5

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

untitled

untitled COM 6 20040920 (Mathematica-1) iijima COM 6 Mathematica (iijima@ae.keio.ac.jp) 1 COM 6 20040920 (Mathematica-1) iijima 1. Mathematica 1.1 1.2 1.3 1.4 2 COM 6 20040920 (Mathematica-1) iijima 1.1 3 COM 6

More information

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

I z n+1 = zn 2 + c (c ) c   pd L.V. K. 2 I 2012 00-1 I : October 1, 2012 Version : 1.1 3. 10 1 10 15 10 22 1: 10 29 11 5 11 12 11 19 2: 11 26 12 3 12 10 12 17 3: 12 25 1 9 1 21 3 1 I 2012 00-2 z n+1 = zn 2 + c (c ) c http://www.math.nagoya-u.ac.jp/~kawahira/courses/12w-tenbou.html

More information

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2 Mathematica I (2001 5 31, 6 7 ) UNIX EDS vncviewer Internet Exploler http://www.efc.sec.eng.shizuoka.ac.jp/admin/pubsoft/ vncviewer.exe : 1 OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51

More information

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].5. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].5. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[ 5 3. Mathematica., : f(x) sin x Plot f(x, y) = x + y = ContourPlot f(x, y) > x 4 + (x y ) > RegionPlot (x(t), y(t)) (t sin t, cos t) ParametricPlot r = f(θ) r = sin 4θ PolarPlot.,. 5. x + y = (x, y). x,

More information

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[x

ContourPlot[{x^+y^==,(x-)^+y^==}, {x,-,}, {y,-,}, AspectRatio -> Automatic].. ContourPlot Plot AspectRatio->Automatic.. x a + y = ( ). b ContourPlot[x 3. Mathematica., : f(x) sin x Plot f(x, y) = x + y = ContourPlot f(x, y) > x 4 + (x y ) > RegionPlot (x(t), y(t)) (t sin t, cos t) ParametricPlot r = f(θ) r = sin 4θ PolarPlot.,.. x + y = (x, y). x, y.

More information

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1

C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1 2006 7 18 1 2 C 2 2.1? 3x 2 + 2x + 5 = 0 (1) 1 2 7x + 4 = 0 (2) 1 1 x + x + 5 = 0 2 sin x x = 0 e x + x = 0 x = cos x (3) x + 5 + log x? 0.1% () 2.2 p12 3 x 3 3x 2 + 9x 8 = 0 (4) 1 [ ] 1/3 [ 2 1 ( x 1

More information

sin x

sin x Mathematica 1998 7, 2001 3 Mathematica Mathematica 1 Mathematica 2 2 Mathematica 3 3 4 4 7 5 8 6 10 7 13 8 17 9 18 10 20 11 21 12 23 1 13 23 13.1............................ 24 13.2..........................

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

brother.\..2.ai

brother.\..2.ai 2004.3 95 pc 2 5 6 7 8 Q SC-370pc 9 HG-2614977766611312 HG-2514977766611329 HG-2414977766611336 HG-2314977766611343 HG-2214977766611350 HG-2114977766611367 TZ-FX2514977766621236 TZ-FX2414977766621229

More information

Chapter 3 Mathematica Mathematica e ( a n = ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n Mathematica Mat

Chapter 3 Mathematica Mathematica e ( a n = ) n b n = n 1! + 1 2! n! b n a n e 3/n b n e 2/n! b n a n b n Mathematica Mat Chapter 3 Mathematica Mathematica e ( a n = 1 + 1 ) n b n = 1 + 1 n 1! + 1 2! + + 1 n! b n a n e 3/n b n e 2/n! b n a n b n Mathematica 10 3.7 3.1 Mathematica { } 26 3 {a, b, c} {{a, b}, {c, d}} {Sin[x],

More information

レイアウト 1

レイアウト 1 1 1 3 5 25 41 51 57 109 2 4 Q1 A. 93% 62% 41% 6 7 8 Q1-(1) Q2 A. 24% 13% 52% Q3 Q3 A. 68% 64 Q3-(2) Q3-(1) 9 10 A. Q3-(1) 11 A. Q3-(2) 12 A. 64% Q4 A. 47% 47% Q5 QQ A. Q Q A. 13 QQ A. 14 Q5-(1) A. Q6

More information

10_11p01(Ł\”ƒ)

10_11p01(Ł\”ƒ) q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1 (2 ( BASIC BASIC download TUTORIAL.PDF http://hp.vector.co.jp/authors/va008683/

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x 11 11.1 I y = a I a x I x = a + 1 f(a) x a = f(a +) f(a) (11.1) x a 0 f(a) f(a +) f(a) = x a x a 0 (11.) x = a a f (a) d df f(a) (a) I dx dx I I I f (x) d df dx dx (x) [a, b] x a ( 0) x a (a, b) () [a,

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

90 0 4

90 0 4 90 0 4 6 4 GR 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 0 0 4 5 6 7 0 4 6 4 5 7 5 6 7 4 5 6 4 5 6 7 4 5 7 4 5 6 7 8 9 0 4 5 6 7 5 4 4

More information

STEP1 STEP3 STEP2 STEP4 STEP6 STEP5 STEP7 10,000,000 2,060 38 0 0 0 1978 4 1 2015 9 30 15,000,000 2,060 38 0 0 0 197941 2016930 10,000,000 2,060 38 0 0 0 197941 2016930 3 000 000 0 0 0 600 15

More information

P072-076.indd

P072-076.indd 3 STEP0 STEP1 STEP2 STEP3 STEP4 072 3STEP4 STEP3 STEP2 STEP1 STEP0 073 3 STEP0 STEP1 STEP2 STEP3 STEP4 074 3STEP4 STEP3 STEP2 STEP1 STEP0 075 3 STEP0 STEP1 STEP2 STEP3 STEP4 076 3STEP4 STEP3 STEP2 STEP1

More information

1

1 1 2 3 4 5 6 7 8 9 0 1 2 6 3 1 2 3 4 5 6 7 8 9 0 5 4 STEP 02 STEP 01 STEP 03 STEP 04 1F 1F 2F 2F 2F 1F 1 2 3 4 5 http://smarthouse-center.org/sdk/ http://smarthouse-center.org/inquiries/ http://sh-center.org/

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

1 Mathematica 1 ê Mathematica Esc div Esc BasicInput 1.1 Ctrl + / Ctrl + / Ctrl / Mathematica N π D

1 Mathematica 1 ê Mathematica Esc div Esc BasicInput 1.1 Ctrl + / Ctrl + / Ctrl / Mathematica N π D 1 Mathematica 1 ê 1 3 0.3333333 Mathematica 1 3 1 3 Esc div Esc BasicInput 1.1 Ctrl + / Ctrl + / Ctrl / Mathematica N π 100 N@Pi, 100D 3.141592653589793238462643383279502884197169399 3751058209749445923078164062862089986280348253

More information

mahoro/2011autumn/crypto/

mahoro/2011autumn/crypto/ http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1 1 2011.9.29, ( ) http://www.ss.u-tokai.ac.jp/ mahoro/2011autumn/crypto/ 1.1 1.1.1 DES MISTY AES 1.1.2 RSA ElGamal 2 1 1.2 1.2.1 1.2.2 1.3 Mathematica

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

Ver.1.0.1-1512 1. 03 2. 04 3. 05 05 4. 06 07 5. 08 6. 09 10 11 12 14 7. 19 2 1. Plus / 3 2. 1 4 3. Plus 5 4. FX 6 4. 7 5. 1 200 3 8 6. 38 25 16 9 6. 10 6. 11 6. 38 / 12 6. 13 6. 25 14 6. 0 359 15 6. 3

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

荳也阜轣ス螳ウ蝣ア蜻・indd

荳也阜轣ス螳ウ蝣ア蜻・indd 1 2 3 CHAPTER 1 4 CHAPTER 1 5 6CHAPTER 1 CHAPTER 1 7 8CHAPTER 1 CHAPTER 2 9 10CHAPTER 2 CHAPTER 2 11 12 CHAPTER 2 13 14CHAPTER 3 CHAPTER 3 15 16CHAPTER 3 CHAPTER 3 17 18 CHAPTER 4 19 20CHAPTER 4 CHAPTER

More information

MacOSX印刷ガイド

MacOSX印刷ガイド 3 CHAPTER 3-1 3-2 3-3 1 2 3 3-4 4 5 6 3-5 1 2 3 4 3-6 5 6 3-7 7 8 3-8 1 2 3 4 3-9 5 6 3-10 7 1 2 3 4 3-11 5 6 3-12 7 8 9 3-13 10 3-14 1 2 3-15 3 4 1 2 3-16 3 4 5 3-17 1 2 3 4 3-18 1 2 3 4 3-19 5 6 7 8

More information

パソコン接続マニュアル P-01F 日本語

パソコン接続マニュアル P-01F 日本語 P-01F 1 2 3 4 5 1 2 +m1111 1 2 3 4 5 6 6 1 1 111 2 1 3 1 1 1 2 1 7 3 8 1 2 1 111 3 4 5 9 1 m111 m1111 c 2 3 4 5 10 1 1 111 2 1 3 1 1 1 2 1 3 1 m111 m1111 2 3 1 11 12 1 2 3 1 2 3 13 1 2 3 4 5 14 6 7 8 9

More information

( ) x y f(x, y) = ax

( ) x y f(x, y) = ax 013 4 16 5 54 (03-5465-7040) nkiyono@mail.ecc.u-okyo.ac.jp hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy

More information

1 1 [1] ( 2,625 [2] ( 2, ( ) /

1 1 [1] ( 2,625 [2] ( 2, ( ) / [] (,65 [] (,3 ( ) 67 84 76 7 8 6 7 65 68 7 75 73 68 7 73 7 7 59 67 68 65 75 56 6 58 /=45 /=45 6 65 63 3 4 3/=36 4/=8 66 7 68 7 7/=38 /=5 7 75 73 8 9 8/=364 9/=864 76 8 78 /=45 /=99 8 85 83 /=9 /= ( )

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

CONTENTS Chapter1 Chapter2 Chapter3

CONTENTS Chapter1 Chapter2 Chapter3 CONTENTS Chapter1 Chapter2 Chapter3 Chapter1 Globalization Red Ocean Blue Ocean Red Ocean Strategy Blue Ocean Strategy 4Chapter1 5 6Chapter1 7 CASE 1 CASE 2 Globalization Chapter2 10Chapter2 11 12Chapter2

More information

num9.dvi

num9.dvi kanenko@mbk.nifty.com alexei.kanenko@docomo.ne.jp http://www.kanenko.com/ FORTRAN ( mandelbrot.f) FORTRAN COMPLEX C,Z,W, W=Z**2+C, w = z 2 +c. OK. W=X*Z+2-1/Z Z=CMPLX(X,Y)! x, y z = x+iy X=REAL(Z)! z x

More information

TMPGEnc Plus 2.5 クイックマニュアル

TMPGEnc Plus 2.5 クイックマニュアル Chapter 1 04 Chapter 1 05 Chapter 1 Chapter 2 STEP 06 07 Chapter 1 Chapter 2 Chapter 1 Chapter 2 STEP 08 Chapter 1 Chapter 2 09 Chapter 1 Chapter 2 STEP 10 Chapter 1 Chapter 2 STEP 11 Chapter 1 Chapter

More information

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12 Chapter 1 Mathematica Mathematica Mathematica 1.1 Mathematica Mathematica (Wolfram Research) Windows, Mac OS X, Linux OS Mathematica 88 2012 11 9 2 Mathematica 2 1.2 Mathematica Mathematica 2 1 Mathematica

More information

立ち読みページ

立ち読みページ Chapter STEP1 74 STEP 75 STEP 91 STEP4 100 105 Chapter 1 P.75 P.79 P.8 4 P.84 5 P.85 6 P.91 7 P.96 8 P.97 9 P.100 10 P.10 11 P.10 1 P.104 1 STEP 1 1 1 4 5 6 7 8 9 74 STEP 1 1 75 STEP UP 1 1 1 4 5 6 7 8

More information

2014計算機実験1_1

2014計算機実験1_1 H26 1 1 1 seto@ics.nara-wu.ac.jp 数学モデリングのプロセス 問題点の抽出 定義 仮定 数式化 万有引力の法則 m すべての物体は引き合う r mm F =G 2 r M モデルの検証 モデルによる 説明 将来予測 解釈 F: 万有引力 (kg m s-2) G: 万有引力定数 (m s kg ) 解析 数値計算 M: 地球の質量 (kg) により解を得る m: 落下する物質の質量

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

極限

極限 si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

橡早川ゼミ卒業論文 棟安.PDF

橡早川ゼミ卒業論文 棟安.PDF 4 1998 J J 3 6 1 J J J J 3 1 1993 1 5 1993 1997 3 3 10 J CP 3 3 CP J 10 300 J 300 J 13 9000 J 2 5 10 25 1978 100 J 1994 pp105106 pp118121 1 J CATEGORY CP 92 10 J CATEGORY 1000 2 CATEGORY J CP CATEGORY

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

0901.\1.ai

0901.\1.ai - 1 - - 2 - - 3 - F O O d O N N N N N N N N N N N N N N N N N N N N N N N E O - 4 - O O N N N N N N N N N N N N N N N N N N N N N N N F O O O O O O O O O O O O O O - 5 - C N N N N N N N N N N N N N N N

More information

google_guide_h1_h4.ai

google_guide_h1_h4.ai ?! PART 1 PART 2 FAQ PART 1 1 STEP! CASE A CASE B CASE B B CASE C CASE A CASE B CASE A CASE C 02 2 STEP!! 03 PART 1 PART 1? 04 PART 1 3 STEP 1 2 3 05 !! 1 2 3 1 2 3 PART 1 06 07 PART 2 PART 2 09 PART

More information