Size: px
Start display at page:

Download ""

Transcription

1

2 2

3 1. 10/ / /23 ( ) 4. 10/ / 6 ( ) 6. 11/ /20 ( ) 8. 11/ / 4 ( ) / /18 skyline 12. 1/ 8 ALE 13. 1/15 ALE 14. 1/22 ALE 3

4 t + t M t+ t ü + C t+ t u + t+ t Q = t+ t F M C t t + t Newmark-β t M, C Q Newton-Raphson M t+ t ü (k) + C t+ t u (k) + t+ t K (k 1) u (k) = t+ t F t+ t Q (k 1) t+ t u (k) = t u (k 1) + u (k) t+ t u (k) = t u (k 1) + u (k) t+ tü (k) = t ü (k 1) + ü (k) u (k), u (k), ü (k) 4

5 t t + t t+τü = t ü + τ t (t+τ ü t ü) τ τ = t t+ t u = t u + t 2 ( t+ tü + t ü ) t+ t u = t u + t t u + t2 3 tü + t2 t+ tü 6 u (k) = t 2 ü(k) u (k) = t2 6 ü(k) 5

6 Newmark -β 1 Newmark-β 1959 Newmark,, t.,, t + t M t+ t ü + C t+ t u + t+ t Q = t+ t F Newmark-β, t + t t,. t+ t u = t u + t [ γ t+ t ü +(1 γ) t ü ] {( ) } 1 t+ t u = t u + t t u + t 2 2 β tü + β t+ t ü 6

7 Newmark -β 2 Newmark-β, t + t t,. t+ t u = t u + t [ γ t+ t ü +(1 γ) t ü ] {( ) 1 t+ t u = t u + t t u + t 2 2 β tü } + β t+ t ü, γ = 1 2, β = 1 6, γ = 1 2, β = 1 4, t+ t u t+ t u. t+ t u = t u + t 2 (t+ t ü + t ü) t+ t u = t u + t t u + t2 4 (t ü + t+ t ü) t t + t t+τü = 1 2 (t ü + t+ t ü) (0 τ t) (1),. γ = 1 2, β = 1 4 (trapezoidal rule) 7

8 Newmark -β 3 Newmark-β, t + t t,,, t + t,. t+ tü = 1 u t u) 1 ( ) 1 t u β t 2(t+ t β t 2β 1 tü { [ t+ t 1 u = t u + (1 γ) t ü + γ u t u) 1 t u ( 1 ]} β t 2(t+ t β t 2β 1)t ü t = t u + t(1 γ) t ü + γ β t (t+ t u t u) γ ( ) 1 t u γ β 2β 1 t t ü = γ ( β t (t+ t u t u)+ 1 γ ) ( t u + t 1 γ ) tü 2β 2β, K Q t+ t t+ t Q = K t+ t u Newmark-β ( 1 β t 2M + γ ) β t C + K t+ t u = t+ t F + M [ 1 β t 2 t u C ( ) 1 t u + β t 2β 1 [ ( ) γ γ t u + β t β 1 tü ] ( ) ] γ t u + 2β 1 t t ü (2) 8

9 Newmark-β ( 1 β t 2M + γ ) β t C + K Newmark -β 4 t+ t u = t+ t F + M [ 1 β t 2 t u + 1 ( ) 1 t u + β t 2β 1 [ ( ) γ γ + C t u + β t β 1 ] tü ( ) ] γ t u + 2β 1 t t ü ( ) 1 M + γ β t 2 β t C + K, γ = 1 2, β = 1 4, t., γ = 1 2, β = 1 t,, 6., γ>

10 Newmark -β 5,, Newton-Raphson (k =2, 3, ). M t+ t ü (k) + C t+ t u (k) + t+ t K (k 1) u (k) = t+ t F t+ t Q (k 1) t+ t u (k) = t+ t u (k 1) + u (k) t+ t u (k) = t+ t u (k 1) + u (k) t+ tü (k) = t+ t ü (k 1) + ü (k), (k) k., Newmark β,,, k k 1 u (k) = γ β t u(k) (3) u (k) ( 1 β t 2M + γ ) β t C + K u (k) ü (k) = 1 β t 2 u(k) (4) = t+ t F t+ t Q (k 1) M t+ t ü (k 1) C t+ t u (k 1) (5) 10

11 Newmark -β 6 Newmark-β. 1. (a) M C. (b). a 0 = 1 a β t 2 1 = γ a β t 2 = 1 β t a 3 = 1 2β 1 a 4 = γ β 1 a 5 = γ 2β 1 a 6 = γ t a 7 =(1 γ) t 2. (a) t + t. K eff = a 0 M + a 1 C + K (b) t + t. t+ t F eff = t+ t F t Q + M(a 2t u + a 3tü)+C(a 4t u + a5ü) (c) t + t t+ t u. K eff u = t F t+ t eff u = t u + u (d),. i. U (0) = U, i =0. ii. i = i +1 iii. i 1. 11

12 t+ t F (i 1) eff = t+ t F M t+ t ü (i 1) C t+ t u (i 1) t+ t Q (i 1) iv. i. K eff u (i) = t+ t F (i 1) eff v.. u = u + u (i) vi., t + t,,. t+ t ü = a 3 u + a 4t u + a 5tü t+ t u = t u + a 6tü + a t+ tü 7 t+ t u = t u + u 12

13 1 t t + t t t + t,,,,. [t, t + t], u t+ t/2 u, u ü. t u t u t+ t/2 = ut+ t u t t ü t = ut+ t/2 u t t/2 t u t = ut+ t/2 + u t t/2 t (6) 13

14 2 M tü + C t u + t Q = t F, u t+ t/2. ( M u t+ t/2 = t + C ) 1 [ ( M (F t Q t (u t )) + 2 t C 2 u t+ t = u t + t u t+ t/2 ) u t t/2 ] (7) t + t u t+ t t ü t. (7), M t + C 2,, u t+ t/2.,, M (lumped mass matrix),.,,,., 1. 14

15 t. t., u t/2, t =0 u 0. u 0 = 0 u t/2 = u t/2 (8) u t/2 = tm 1 (F t Q t (u t ))/2 (9) 15

16 3. 1. (a) M C. (b) t. (c). M eff = M t + C 2 (d) 0 0 u, 0 u 0 ü, t. 2. (a) t. F t eff = F t Q t (u t )+ ( M t C 2 ) u t t/2 (b) t + t/2 u t+ t/2. u t+ t/2 = M 1 eff F t eff (c) t + t u t+ t. t ü t.,, t. 16

17 1, consistant (lumped).. consistant, ρ 0, ρ t 0,t δu ρ 0 üdv = δu ρ t üd t v = δu t MÜ (10) V t v. (10),, consistant. (lumped),, consistant,, lumped.,,, lumped. 17

18 1 lumped,, V e N i dv e. lumped 1. V e N (i) dv i 2. V e N (i) N (i) dv i serendipity 5. consistent 18

19 1 MK Ax = λx Kx = λmx MK L M = LL T Kx = λmx Kx = λll T x L 1 Kx = λl T x L T x = y x = L T y L 1 KL T y = λy MK 19

20 2 R = xt Ax x T x = xt λx x T x = λ 20

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

入門ガイド

入門ガイド ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

ÿþ

ÿþ I O 01 II O III IV 02 II O 03 II O III IV III IV 04 II O III IV III IV 05 II O III IV 06 III O 07 III O 08 III 09 O III O 10 IV O 11 IV O 12 V O 13 V O 14 V O 15 O ( - ) ( - ) 16 本 校 志 望 の 理 由 入 学 後 の

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 c Koichi Suga, ISBN

1 c Koichi Suga, ISBN c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t

More information

(報告書まとめ 2004/03/  )

(報告書まとめ 2004/03/  ) - i - ii iii iv v vi vii viii ix x xi 1 Shock G( Invention) (Property rule) (Liability rule) Impact flow 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (

More information

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7

More information

ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture [email protected] 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) (Windows 95 ) ii iii iv NEC Corporation 1999 v P A R T 1 vi P A R T 2 vii P A R T 3 P A R T 4 viii P A R T 5 ix x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 6 5 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 4

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) (Windows 98 ) ii iii iv v NEC Corporation 1999 vi P A R T 1 P A R T 2 vii P A R T 3 viii P A R T 4 ix P A R T 5 x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 5 6 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 10

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information