Size: px
Start display at page:

Download ""

Transcription

1 hyoo/wave.html 1 1, , [ ] [ ] [ ] [ ] N large N 3.2, N 4.1,

2 [ ] [ ] [ ] [ ] π [ ] [ ] A-D A 56 A A A A A A

3 1 1, k m mẍ(t) = kx(t) (1.1) k m ω2 0 (1.2) ẍ(t) + ω 2 0x(t) = 0 (1.3) x(t) = A cos( ω 0 t + φ) (1.4) 1.4 T = 2π ω 0 ν = 1 T 1 ω 0 3

4 E = 1 2 m{ẋ(t)} k{x(t)}2 = 1 2 m ω2 0A 2 (1.5) [Memo] x(t) = A sin( ωt + ϕ) (1.4) mẍ(t) = kx(t) Γẋ(t) (1.6) k m ω2 0, Γ m γ (1.7) ẍ(t) + γẋ(t) + ω 2 0x(t) = 0 (1.8) γ/2 ω 0 ( ) x(t) = A e γt/2 cos ω0 2 (γ/2)2 t + φ (1.9) ω0 2 (γ/2)2 A e γt/2 5.2 [Memo] ω0 2 (γ/2)2 ω 0 4

5 mẍ(t) = kx(t) Γẋ(t) + F (t) (1.10) ω F (t) = F 0 cos ωt (1.11) mẍ(t) = kx(t) + F 0 cos ωt (1.12) k m ω2 0, 5 F 0 m f 0 (1.13)

6 ẍ(t) + ω 2 0x(t) = f 0 cos ωt (1.14) x(t) = A cos ωt (1.15) A ( ω 2 0 ω 2 )A = f 0 A = x(t) = ω 2 0 f 0 f 0 ω 2 0 ω2 (1.16) ω2 cos ωt (1.17) ω ω 0 [ ] (1.14) ẍ(t)+ ω 2 0x(t) = 0 (1.4) , 5.3 k m ω2 0, Γ m γ, F (t) f(t) (1.18) m (1.10) ẍ(t) + γẋ(t) + ω 2 0x(t) = f 0 cos ωt (1.19) x(t) = A cos ωt + B sin ωt (1.20) A, B ( ) ( ) ( ) ω0 2 ω 2 γ ω A f 0 = γ ω ω0 2 ω 2 B 0 (1.21) 6

7 A, B ( ) ( ) A f 0 ω0 2 ω 2 = B ( ω0 2 ω2 ) 2 + (γ ω) 2 γ ω (1.22) x(t) = A cos ωt + B sin ωt = A 2 + B 2 cos( ωt + φ 0 ) = f 0 ( ω 2 0 ω 2 ) 2 + (γ ω) 2 cos( ωt + φ 0) (1.23) tan φ 0 = B A = γ ω ω 2 0 ω2 (1.24) [Memo] (1.19) φ 0 f(t) = f 0 cos ωt 1 χ( ω) (1.25) ( ω 2 0 ω 2 ) 2 + (γ ω) 2 ω 5.7 ω ω 0 χ( ω) 7

8 ω ω 0 ω = ω 0 ω 0 χ( ω) χ( ω 0 ) 1 2 χ( ω) χ( ω 0 ) = 1 (1.26) 2 γ ω 0 ( ω 2 0 ω 2 ) 2 + (γ ω) = ( ω 2 0 ω2 γ ω 0 ( ω 2 ω 2 0 γ ω 0 ω ω 0 ω 0 ) 2 ( ω + ω 0 ) 2 ( ω + ω 0 ) 2 = 2 ) 2 = 2 (1.27) ( ω 2 ω 2 0 ) 2 = 1 γ ω 0 ω 2 ω0 2 γ ω 0 ω 2 ω0 2 γ ω 0 (1.28) ω 0 ω ω 0 γ ω + ω 0 ω ω 0 γ 2 ω 0 ω = γ = Γ m (1.29) ω 0 ω ω 0 = γ ω 0 = Γ m [Memo] Q m k = Γ (1.30) mk Q Q ω 0 ω = mk Γ [ ] (1.19) ẍ(t) + γẋ(t) + ω 2 0x(t) = 0 (1.9) 8

9 m 1 ẍ 1 (t) = k 1 x 1 (t) + k 2 {x 2 (t) x 1 (t)} m 2 ẍ 2 (t) = k 2 {x 2 (t) x 1 (t)} + k 3 { x 2 (t)} (2.1) m 1 = m 2 M k 1 = k 2 = k 3 K (2.2) K M ω2 0 (2.3) ẍ 1 (t) = 2 ω0x 2 1 (t) + ω0x 2 2 (t) ẍ 2 (t) = ω0x 2 1 (t) 2 ω0x 2 2 (t) (2.4) x 1(t) + x 2 (t) 2 x 2 (t) x 1 (t) q c (t) 1 2 {x 1 (t) + x 2 (t)} q r (t) 1 2 {x 2 (t) x 1 (t)} (2.5) 9

10 [Memo] q c (t) q r (t) x 1 (t), x 2 (t) (2.4) q c (t), q r (t) q c (t) = ω0q 2 c (t) (2.6) q r (t) = 3 ω0q 2 r (t) q c (t) = A c cos( ω 0 t + φ c ) q r (t) = A r cos( 3 ω 0 t + φ r ) (2.7) ω 0 3 ω E = 1 2 M{ẋ 1(t)} M{ẋ 2(t)} K{x 1(t)} K{x 2(t) x 1 (t)} K{x 2(t)} 2 (2.8) 10

11 q c (t) q r (t) E = 1 2 M{ q c(t)} M{ q r(t)} K{q c(t)} K{q r(t)} 2 (2.9) q c (t) = A c cos( ω 0 t + φ c ), q r (t) = 0 E c = 1 2 M ω2 0A 2 c (2.10) q c (t) = 0, q r (t) = A r cos( 3 ω 0 t + φ r ) E r = 1 2 M( 3 ω 0 ) 2 A 2 r (2.11) [Memo] E = 1 2 m ω2 A 2 (1.5) (2.10) (2.11) 2.2 [ ] ( ) ( ) ( ) ẍ 1 (t) = ω x 1 (t) ẍ 2 (t) 1 2 x 2 (t) (2.12) ( ) x 1 (t) x(t) = x 2 (t) ( ) 2 1 H = 1 2 (2.13) ẍ(t) = ω 2 0Hx(t) (2.14) 3 11

12 H (i) H s s s ω 0 (ii) q(t) u x(t) H u x(t) 2.3 [ ] 2.4 H (2.13) ( ) 2 1 H = 1 2 (2.15) H s det (H s I) = 0 (2.16) I s = 1, 3 (2.17) s c = 1, s r = 3 (2.18) H (i) s c = 1 u c Hu c = s c u c (2.19) ( ) 1 1 u c = 0 (2.20) 1 1 u c ( ) u c = u c u c = 1 s c = 1 (2.21) 12

13 1 ω 0 q c (t) u c x(t) = 1 2 (x 1 (t) + x 2 (t)) [Memo] (2.5) (ii) s r = 3 u r Hu r = s r u r (2.22) ( ) 1 1 u r = 0 (2.23) 1 1 u r ( ) u r = (2.24) s c = 3 3 ω 0 q r (t) u r x(t) = 1 2 ( x 1 (t) + x 2 (t)) 2.4 [ ] ẍ(t) = ω 2 0Hx(t) (2.25) x(t) N (N 2) ω 0 M K Mẍ(t) = Kx(t) M 1 K = ω0h 2 ω0 2 H ẍ(t) = Hx(t) H ω0 2 H H H T H T = H 13

14 H Hu m = s m u m (2.26) u m 1 [ ] m = 1, 2, 3,... s 1 s 2 s 3... s N s m = s m+1 H ) U = (u 1 u 2 u N (2.27) U U U T U 1 U T = U 1 U 1 HU s 1 U 1 s 2 HU =... S (2.28) s N ẍ(t) = ω0hx(t) 2 (2.29) U 1 U 1 ẍ(t) = ω0u 2 1 Hx(t) (2.30) UU 1 = I I U 1 ẍ(t) = ω 2 0U 1 HUU 1 x(t) (2.31) 14

15 U 1 x(t) q(t) (2.32) q(t) = ω 2 0Sq(t) (2.33) S x(t) q(t) q(t) q(t) = U 1 x(t) m q m (t) m = 1, 2,..., N q m (t) = u m x(t) (2.34) U 1 = U T q m (t) q m (t) = s m ω 2 0q m (t) (2.35) ω m s m ω 0 (i) H s m s m s m ω 0 (ii) q m (t) u m x(t) (i)(ii) x(t) = m q m (t)u m = m A m cos( s m ω 0 t + φ m )u m (2.36) m x(t) = q m (t)u m = A m cos( s m ω 0 t + φ m )u m (2.37) u m A m cos( s m ω 0 t + φ m ) 2.5 [ ] 15

16 ( 1) ( 7) ( 2) ( 8) [ ] 16

17 n 4 K n, n M n n x n (t) M 1 ẍ 1 (t) = K 1 x 1 (t) + K 2 {x 2 (t) x 1 (t)} (2.38) M 2 ẍ 2 (t) = K 2 {x 2 (t) x 1 (t)} K 3 M 1 = M 2 M K 1 = K 2 K (2.39) ω 0 K M ẍ 1 (t) = 2 ω0x 2 1 (t) + ω0x 2 2 (t) ẍ 2 (t) = ω0x 2 1 (t) ω0x 2 2 (t) (2.40) (2.41) ( ) x 1 (t) x(t) = x 2 (t) ( ) 2 1 H = 1 1 (2.42) ẍ(t) = ω 2 0Hx(t) (2.43) 1 (i) H s m s m ω m s m ω 0 (ii) u m 2 M = 70[t] = 70, 000[kg], K = 20, 000[kN/m] ω m (m = 1, 2) T m = 2π ω m (2.44) 4 17

18 3 F (t) = F 0 cos ωt (2.45) 5.11 ω ω m T = 2π ω T m = 2π ω m 2 m = 1 m =

19 3 N ẍ M = K ẍ 2 ẍ x 1 x 2 x 3 (3.1) ẍ(t) = ω 2 0Hx(t), ω 0 = K M (3.2) (i)(ii) (i) H s m s m ω m s m ω 0 (ii) u m x(t) = A m cos( s m ω 0 t + φ m )u m (2.37) H s det(h si) = 0 (3.3) s 1 = 2 2, s 2 = 2, s 3 = (3.4) u Hu m = s m u m (m = 1, 2, 3) (3.5) u 1 = 1 1 2, u 2 = 1 1 0, u 3 = (3.6)

20 3.2 x 1 (t) = A 1 cos( ω 1 t + φ 1 )u 1 (3.7) u 1 ω 1 x 2 (t) = A 2 cos( ω 2 t + φ 2 )u 2 (3.8) u 2 ω 2 x 3 (t) = A 3 cos( ω 3 t + φ 3 )u 3 (3.9) u 3 ω 3 20

21 3.2 large N 3.2, N ẍ(t) = ω0hx(t) 2 (3.10) K ω 0 = H M H x(t) q(t) (1) H Hu m = s m u m m (m = 1, 2,..., N) 3.4 (2) x(t) = A m cos( s m ω 0 t + φ m )u m (3.11) 21

22 (N ) N = 3, 10, 30 1 ω m m 1: m ω m m vs ω m / ω 0 = s m N = 3, 10, 30. ω m m N =

23 1 2: N = 10 m = 1, 2, 3, 4, 5. m = 6, 7, 8, 9, m m = 1 m m = 10 m m 23

24 m 3.3 E m = 1 2 M ω2 ma 2 m = s m 1 2 M ω2 0A 2 m (3.12) E m s m [ ] K A E = 1 2 M ω2 A 2 (1.5) N N x(t) = A m cos( ω m t + φ m )u m (3.13) m=1 x(t) = A m cos( ω m t + φ m )u m (3.14) m: (3.14) 1 ω m m [ ] N N 3 [ ] 24

25 3: N = N E = N i=1 1 2 M{ẋ i(t)} 2 + N i=0 1 2 K{x i+1(t) x i (t)} 2 (3.15) x 0 (t) = x N+1 (t) = 0 5 E = 1 2 M ẋ(t) ẋ(t) + 1 Kx(t) Hx(t) (3.16) 2 H N x(t) = A m cos(ω m t + φ m )u m (3.17) m=1 6 1 m = m u m u m = (3.18) 0 m m E = = N m=1 N m=1 ( 1 2 Mω2 ma 2 m sin 2 (ω m t + φ m ) + 1 ) 2 Mω2 0s m A 2 m cos 2 (ω m t + φ m ) 1 2 Mω2 ma 2 m (3.19) Hu m = s m u m K = Mω 2 0 ω2 m = s m ω M K E = 1 2 ẋ(t) Mẋ(t) + 1 x(t) Kx(t) 2 6 U T = U 1 U 1 U = U T U = I 25

26 4 4 N x(t) = A m cos( ω m t + φ m )u m large N m=1 ẍ(t) = ω 2 0Hx(t) N ẍ(t) = ω0hx(t) 2 N solve x(t) = N A m cos( ω m t + φ m )u m m=1 N solve 4.1 N 4.1, 4.4 ẍ(t) = ω0hx(t) 2 ẍ 1 (t) 2 1 x 1 (t) ẍ 2 (t) = ω x 2 (t)..... ẍ N (t) 1 2 x N (t) (4.1) N x 0 (t) = x N+1 (t) = 0 x 0 (t) ẍ 1 (t) x 1 (t) ẍ 2 (t) = ω x 2 (t).... (4.2). ẍ N (t) x N (t) x N+1 (t) n (n = 1, 2,..., N) ẍ n (t) = ω 2 0{x n+1 (t) 2x n (t) + x n 1 (t)} (4.3) 2 N ( T x(t) = x 1 (t) x 2 (t) x N (t)) (4.4) 26

27 nd d (4.3) ψ(nd, t) x n (t) = ψ(nd, t) (4.5) 2 ψ(nd, t) 2 ψ(nd + d, t) 2ψ(nd, t) + ψ(nd d, t) t 2 = ( ω 0 d) d 2 (4.6) N L = (N + 1)d d d 0 nd ξ 2 ψ(ξ, t) t 2 = ( ω 0 d) 2 2 ψ(ξ, t) ξ 2 (4.7) K M E ρ K = E S d ω 0 = 2 ψ(ξ, t) t 2 [Memo] M = ρsd (4.8) K M = E ρ d 2 (4.9) = E ρ E ρ 2 ψ(ξ, t) ξ 2 (4.10) v 4.2 N N N (2.43) ẍ 1 (t) 2 1 x 1 (t) ẍ 2 (t) = ω x 2 (t)..... ẍ N (t) 1 1 x N (t) 2 1 (4.11) 27

28 x 0 (t) = 0, x N+1 (t) = x N (t) (4.12) x 0 (t) ẍ 1 (t) x 1 (t) ẍ 2 (t) = ω x 2 (t)..... ẍ N (t) x N (t) x N+1 (t) (4.13) n (n = 1, 2,..., N) ẍ n (t) = ω 2 0{x n+1 (t) 2x n (t) + x n 1 (t)} (4.14) x n (t) = ψ(nd, t) d 2 ψ(nd, t) 2 ψ(nd + d, t) 2ψ(nd, t) + ψ(nd d, t) t 2 = ( ω 0 d) d 2 (4.15) N h = Nd d d 0 nd ξ 2 ψ(ξ, t) t 2 = ( ω 0 d) 2 2 ψ(ξ, t) ξ 2 (4.16) (4.12) ψ(0, t) = 0, ψ x (h, t) = 0 (4.17) ψ x x K M G 7 ρ K = G S d ω 0 = 2 ψ(ξ, t) t 2 M = ρsd (4.18) K M = G ρ d 2 (4.19) = G ρ 2 ψ(ξ, t) ξ 2 (4.20)

29 v 8 E ρ v = T σ 1 κρ (4.21) [Memo] E = (E x, E y, E z ) (x, y, z) t E i (x, y, z, t) 2 ( E i t 2 = c 2 2 ) E i x E i y E i z 2 c B B i (x, y, z, t) (4.22) 8 E ρ T σ κ 29

30 5 4 2 ψ t 2 = v2 2 ψ x 2 (5.1) ψ(0, t) = ψ(l, t) = 0 (5.2) N [Memo] (step1) ψ(x, t) = f(x)g(t) (5.3) f(x), g(t) ω f(x), g(t) (step2) d 2 g dt 2 = ω2 g(t) d 2 f ( ω ) (5.4) 2 dx 2 = f(x) v f(x) (5.4) f(0) = f(l) = 0 ( ω ) ( ω ) f(x) = α sin v x + β cos v x 9 f(0) = 0 β = 0 f(l) = 0 m = 1, 2,... (5.5) ω L = mπ (5.6) v 9 ω ω f(x) = A cos v x + φ f(x) = B sin v x + ϕ OK 30

31 (step3) g(t) g(t) = A cos( ωt + φ) (5.7) ω = mπ L v g(t) = A cos ( mπ ) L vt + φ m (5.8) (step4) α = 1 ( mπ ) ( mπ ) ψ m (x, t) = A m cos L vt + φ m sin L x (5.9) x(t) = A m cos(ω m t + φ m )u m (3.11) (5.1) (step5) (5.1) ψ(x, t) = m=1 ( mπ ) ( mπ ) A m cos L vt + φ m sin L x (5.10) 31

32 T m λ m 10 ψ m (x, t + T m ) = ψ m (x, t) ψ m (x + λ m, t) = ψ m (x, t) (5.11) (5.9) T m λ m T m = 2L mv (5.12) λ m = 2L m λ m = vt m (5.13) v = 331[m/s] T m = 2L mv ν m 1 T m = m 2L v (5.14) (5.13) λ m ν m = v (5.15) m = 1 m = 2 m = 3 m = 4 2L v L v 2L 3v T m 2L λ m 2L L 3 ω m k m π L v π L 2π L v 2π L 3π L v 3π L L 2v L 2 4π L v 4π L 1: T m λ m ω m 2π T m = mπ L v k m 2π = mπ λ m L 10 T m λ m (5.16) 32

33 (5.9) ψ m (x, t) = A m cos( ω m t + φ m ) sin(k m x) (5.17) ω m k m ω m = vk m (5.18) (5.10) (5.10) ψ(x, t) = A m 2 m=1 ( mπ ) sin L (x vt) φ m = f(x vt) + g(x + vt) + A m 2 m=1 ( mπ ) sin L (x + vt) + φ m A m φ m f(s), g(s) s v v (5.19) [ ] ψ(x, t) t 2 = v 2 2 ψ(x, t) x 2 (5.20) 33

34 ψ(x + L, t) = ψ(x, t) (5.21) ψ(x, t) = m=0 ( ) { ( ) ( )} 2mπ 2mπ 2mπ cos L vt + φ m C m cos L x + D m sin L x (5.22) 34

35 N ν m 20 Hz - 20 khz 6.1 [ ] ,8 35

36 [Memo] 8 A m m m L (5.14) ν 1 = 1 2L v (6.1) ν : ν ν c 9 8 ν c 5 4 ν c 4 3 ν c 3 2 ν c 5 3 ν c 15 8 ν c 2ν c 2: ν c

37 [ ] /12 [Memo] ν 1 L (5.14) ν 1 = 1 2L v = 1 T 2L σ (6.2) 12 37

38 8 L 9 L 4 5 L 3 4 L 2 3 L 3 5 L 8 15 L 1 2 L 9 ν c 8 ν 5 c 4 ν 4 c 3 ν 3 c 2 ν 5 c 3 ν 15 c 8 ν c 2ν c 3: 4: L {λ m = 2Lm : m = 1, 2,... } m = 1 m = 2, 3,... {ν m = mν 1 : m = 2, 3,...} L ν 1 = 1 { 2L v ν c ν c, 9 8 ν c, 5 4 ν c, 4 3 ν c, 3 2 ν c, 5 3 ν c, 15 } 8 ν c, 2ν c

39 ν 1 = v = v λ 1 2L [ ] (i) (ii) [ ] htm RLC 5: C[F] L[H] 39

40 14 7 ν LC 1 ν r = 2π LC (6.3) ν [Memo] RLC - L M C K 1 ν = 1 K 2π M [kHz] 20[Hz] 20[kHz] ν r 700[kHz] 2 ν r [kHz] ν = 440[Hz] (a)(b) ν ν ν 2 ν + ν 2 ν 14 40

41 a(t) = A sin (2πνt π ν t) + A sin (2πνt + π ν t) (6.4) a(t) = 2A cos(π ν t) sin(2πνt) (6.5) a(t) 2.9(c) 2A cos(π ν t) sin(2πνt) 2 ν 2.9(c) T beat = 1 ν ν beat ν ν beat = ν (6.6) ν 2A cos(π ν t) [ ] (i) 41

42 (ii) (6.3) (6.6) [ ] 6 6: ψ(x, t) t 2 = v 2 2 ψ(x, t) x 2 (6.7) ψ(0, t) = 0, ψ x (h, t) = 0 (6.8) h x x λ 1 h λ 1 = 4h (6.9) λ 1 = vt 1 T 1 T 1 = 4L v = 4 ρ G h (6.10) 42

43 T 1 = 0.02h (6.11) E = 30[GPa] = [N/m 2 ] ν = 0.2 ρ = 2.5[kg/m 3 ] G = E 2(1 + ν) = [N/m 2 ] (6.12) ρ G = [s/m] (6.13) h[m] ρ T 1 = 4 h 0.002h[s] (6.14) G (6.11) 2.5 [ ] (i) (6.11) T 1 = 0.02h T 1 (ii) (i) 43

44 (5.20) ψ(x + L, t) = ψ(x, t) (7.1) ( ) { ( ) ( )} 2mπ 2mπ 2mπ ψ(x, t) = cos L vt + φ m C m cos L x + D m sin L x m=0 (7.2) t = 0 15 ψ(x, 0) = c 0 + m=1 ( ) 2mπ c m cos L x + m=1 ( ) 2mπ d m sin L x (7.3) ψ(x + L, 0) = ψ(x, 0) {f(x) : f(x) = f(x + L)} sin cos L f(x) = c 0 + m=1 ( c m cos 2π mx L ) + ( d m sin 2π mx ) L m=1 (7.4) {c m, d m } 15 C m cos φ m c m D m sin φ m d m 44

45 1 a(t) a(t + T ) = a(t) a(t) = c 0 + m=1 ( c m cos 2π mt ) T + m=1 ( d m sin 2π mt ) T (7.5) 7.2 ( exp 2π i mt ) = cos T ( 2π mt T ) ( + i sin 2π mt ) T (7.6) [ ] j i a(t) = c 0 + m=1 c m id m 2 ( exp 2π i mt ) T + m=1 c m + id m 2 c 0 m = 0 c m id m A m m = 1, 2,... 2 c m + id m m = 1, 2,... 2 a(t) = m= ( A m exp 2π i mt ) T ( exp 2π i mt ) T (7.7) (7.8) (7.9) {A m } 45

46 A m = A m (7.10) a(t) A m A m T m 7.3 a(t) m [ ] a(t) = m=0 A m = 1 T T 0 ( a(t) exp 2π i mt ) dt (7.11) T ( A m exp 2π i mt ) ( ) exp 2π i m t m Z T T t 0 T 1 T ( exp 2π i (m ) m )t dt = δ m,m (7.12) T 0 T [ ] a(t) 0 < x < T T 2 < x < T 2 A m = 1 T T/2 T/2 ( a(t) exp 2π i mt ) dt (7.13) T a(t) 7.4 2π T = 2π T = 2π a(t) a(t) = m= A m e imt (7.14) A m = 1 π a(t) e imt dt (7.15) 2π π [ ] 2π 46

47 7: m = [ ] 7 a(t) = t π < t < π (7.16) a(t + 2π) = a(t) T = 2π (7.15) m = 0 A 0 = 0. m 0 π A m = 1 t e imt dt 2π π = 1 1 [ t e imt ] π ip 2π π π e imt dt ip 2π π = i 1 { π e imπ + π e imπ} [ e imt ] π m 2π m 2 2π π (7.17) = i m ( 1)m e imπ = e imπ = cos(mπ) = ( 1) m a(t) 47

48 a(t) = m 0 i m ( 1)m e imt (7.18) A m 1 m 7.6 [ ] [ 1] T = 2π a(t) (7.15) A m = 1 2π π π a(t) e imt dt (7.19) 1 π < t < 0 (1) a(t) = +1 0 < t < π 1 + t π π < t < 0 (2) a(t) = 1 t π 0 < t < π (7.20) π < t < π a(t + 2π) = a(t) [ 2] (7.20) {A m } (7.19) (7.19) π t < π 2N t 2N t = 2π t = n t = π n N N n < N (7.21) A m = 1 2N N 1 n= N a(πn/n) e imπn/n (7.22) fortrun, c++, Excel [ ] - (A-D) DFT Discrete Fourier Transforamtion 48

49 A m a(πn/n) IDFT Inverse Discrete Fourier Transforamtion [ 3] M N M a M (t) A m e imt (7.23) m= M a(t) (7.20) plot M 2, 5, 10 [ ] m = M a M (t) a(t) (October, 2007) p

50 8 CQ (October, 2007) p23-28, Blue Backs, Blue Backs 8.1 A A-D 1 T = 4.54[ms] ν = 220[Hz] [Memo] 50

51 A-D 3 T = 9.64[ms] ν = 104[Hz] 8.2 A-D A-D 7 T s ν s T s T T s T (ν s ν) (8.1) T s ν s D-A

52 ν max T min ν s ν max T s T min ν max 20[kHz] 0.05[ms] 20[kHz] 20[kHz] (*) ν max = 20[kHz] (T min = 0.05[ms]) (8.2) ν s ν s > 40[kHz] (T s < 0.025[ms]) (8.3) (*) A-D 20[kHz] 20[kHz] 1.5 RC CD DVD ν s = 44.1[kHz] T s = [ms].wav ν max = 4[kHz] T min = 0.25[ms] 52

53 ν s = 8[kHz] T s = 0.125[ms] 8 8:.wav 2 16 = : A 1 53

54 A 1 9 ν = 220[Hz] T = 4.54[ms] 5 [Memo] Octave.wav Octave : ν = 104[Hz] T = 9.64[ms] 5 db 20 log F 1 2 F 2 3 F 3 54

55 F 1 F

56 A H T = H - -, A.1 ( ) 2 1 H = 1 2 (A.1) H 11 11: H ( ) ( ) x, y i = 1 0, j = 0 1 H ( ) 2 a 1 H = ( a ) b ( ) 1, b 2 (A.2) (A.3) 56

57 H i, j a, b Hi = a Hj = b (A.4) ci + dj ca + db 12: H i, j ci + dj ca + db i, j Hi = a, Hj = b 1 det(h) = 3 [ ] H H 1 HH 1 = H 1 H = I (A.5) I H 11 H A.2 Hu u 11 Hu = su (A.6) s det(h si) = 0 (A.7) s 1 = 1, s 2 = 3 57

58 s 1 = 1, s 2 = 3 ( ) ( ) u 1 = 1 1, u 2 = Hu 1 = u 1 Hu 2 = 3u 2 (A.8) (A.9) 13 i, j u 1, u 2 H H u 1 s 1 = 1 u 2 s 2 = 3 A.3 H i, j u 1, u 2 i, j u 1, u 2 ) U (u 1 u 2 (A.10) i, j u 1, u 2 Ui = u 1 (A.11) Uj = u 2 u 1, u 2 i, j U U 1 U ( ) U = = ( cos 45 o sin 45 o ) sin 45 o cos 45 o 45 o ( ) ( ) U 1 = cos 45 o sin 45 o = sin 45 o cos 45 o (A.12) (A.13) 45 o 58

59 13: H cu 1 + du 2 cs 1 u 1 + ds 2 u 2 u 1, u 2 Hu 1 = s 1 u 1, Hu 2 = s 2 u 2 H U 1, S, U 59

60 14: H U 1, S, U H (i) 45 o (ii) s 1 = 1 s 2 = 3 (iii)45 o U, U 1 H ( ) U 1 s 1 0 HU = S 0 s 2 (A.14) U 1 HU = S H = USU 1 (A.15) H 13 60

61 U 1 : 45 o i, j u 1, u 2 S: s 1 = 1 s 2 = 3 S U: 45 o i, j A.4 H H U 1, S, U U 1 U S s 1 = 1 s 2 = 3 s 1 s 2 S s 1 0 det(s) = 0 s 2 = s 1s 2 (A.16) [ ] 2 2 ( ) a 11 a 12 A = a 21 a 22 (A.17) det(a) = a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21 (A.18) H 2 1 det(h) = 1 2 = 3 (A.19) s 1 s 2 = 3 [ ] 2 2 det(a si) = 0 ( ) a 11 a 12 A = a 21 a 22 (A.20) (a 11 s)(a 22 s) a 12 a 21 = 0 (A.21) 61

62 s 1, s 2 (a 11 s)(a 22 s) a 12 a 21 = (s 1 s)(s 2 s) (A.22) s = 0 a 11 a 22 a 12 a 21 = s 1 s 2 (A.23) a 11 a 12 a 21 a 22 = s s 2 (A.24) (Q.E.D.) H det(h) = det(s) H [ ] A.5 H det(h) H 1 det(h 1 ) H det(h 1 ) = 1 det(h) = 1 3 det(h 1 ) det(h) = 1 (A.25) (A.26) [ 1] det(h) = 0 det(h 1 ) = det(h) = 0 H 1 [ 2] A, B det(a) det(b) = det(ab) (A.27) (A.26) H 1 H = I 62

63 A.6 H = ( a b ) b a (A.28) a b (1) H s 1, s 2 (2) H u 1, u 2 u i 1 (3) ) U = (u 1 u 2 (A.29) H H = USU 1? U 1 :? S U :?? :? (4) (a) U 1 (b) SU 1 (c) USU 1 H * 63

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information