untitled

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "untitled"

Transcription

1 R 1

2 Excel

3

4 1, 2.6, 2/3, 105.2, , 3, 0, 245 A, B, C... ; , 3/4, 0.99

5 MS Excel»» R Macintosh

6 MS Excel Excel Excel

7 MS Excel MS Access Excel R

8 R R R.Data win Mac ctrl + R Win, command + Mac

9 R > > 1 1 > 2 * 2 > 4 / 2 > 3^2 > sqrt(9) > 9^(1/2) ½

10 R Tips tips/r.html Rjp Wiki

11 > a < 3.14 > b < c( 1, 2, 3, 4, 5, 6) > x < matrix(nrow = 2, ncol = 3) > data < read.csv( HandSize.csv, header = T) b[3] x[2, 3] data$hl

12 CSV CSV *.csv R read.csv(.csv, header = T) R write.csv(.csv

13 [,] > d[d$hl== F,] # d d$hl== F TRUE > d[d$hl== F,]$HL # HL subest() > d.f < subset(d, HL == F ) # d HL== H d.f > d.f$hl

14 plot(), boxplot(), histogram() plot(hl, data = d) HL boxplot(hl, data = d) plot(hl ~ Sex, data = d) HL Sex plot(hl ~ BL, data = d) histogram(d$hl, breaks = ) breaks

15

16 a X 1, X 2,...X n a a X 1 a, X 2 a,...x n a n Σ X i a) # Σ X i a # Σ X i a) 2 # 2

17 a a f(a) a f(a) = (X 1 a) 2 + (X 2 a) (X n a) 2 = X 12 + X X n2 2a(X 1 + X X n ) + na 2 a f(a) a f(a) a f (a) = 0 2(X 1 + X X n ) + 2a = 0 a = (X 1 + X X n ) /n

18 N μ, σ 2 μ σ 2

19 lm( ) lm()

20 m0 null Null model μ μ ( x ) 2

21 m0 P P t = 0 t

22 HL HL t p α α = 0.05 = 1/20 p α HL

23 α p p = /20... Type I

24 m0 P P t = 0 t

25 ( x / > t.cal < (mean(d$hl) 0) / sqrt(var(d$hl)/n) n 1 t n 25

26 m1 ANOVA lm(hl ~ 1, data = d) lm(hl ~ Sex, data = d)

27 m1 ANOVA p p t

28 ... lm(hl ~ Sex, data = d) t > var.test(bl.f, BL.m) > t.test(bl.f, BL.m,,var.equal = TRUE) BL.f BL.m t p lm()

29 ...

30 m2 Y Y p p Y

31 m3 ANCOVA p 0.05

32 m4 ANCOVA

33 HL ~ 1 HL ~ Sex + HL ~ BL + BL HL ~ BL + Sex + BL + ) + BL HL ~ BL + Sex + BL:Sex + BL + ) + BL summary a Intercept b BL a m SexM b m BL:SexM

34 ... p

35

36 Model 0: HL ~ 1 Model 1: HL ~ Sex Model 2: HL ~BL HL male female HL HL BL BL BL Model 3: HL ~ BL + Sex Model 4: HW ~ BL + Sex + BL:Sex HL HL BL BL

37 AIC AIC 2 e.g.

38 AIC AIC Model 3 Model 4

39 AIC. BL*Sex BL +Sex BL Sex 1 AIC BL*Sex e e BL+Sex e e BL N/A 7.017e Sex 4.994e

40 Excel R Excel R Excel

41 R MCMC ( ) Crawley: :R

42 2

43 anova(h0, h1) 2 h 0 h p.value = 1 pchisq(2*(mll.h1$value MLL.h0$value), h1 h0 ) F 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

2

2 2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

untitled

untitled 2011/6/22 M2 1*1+2*2 79 2F Y YY 0.0 0.2 0.4 0.6 0.8 0.000 0.002 0.004 0.006 0.008 0.010 0.012 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Y 0 50 100 150 200 250 YY A (Y = X + e A ) B (YY = X + e B ) X 0.00 0.05 0.10

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

ACCESS入門編

ACCESS入門編 ACCESS () / 255 65535 0 255-32768 32767 15 4 1 Yes/No OLE Yes=-1 NO=0 OK Like AND *[ ]* Like *[ ]* Like >= =40 40 OR 1 OR AND 2000 2 2 AND 2 OK CTRL SHIFT IME 1 IME [1] [2]2

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

1...1 1...1 2...1 2.1...1 2.2...5 2.3...6 1...6 2...6 3...7 4...7 5...7 2.4...8 2...9 1...9 2... 10 2.1... 10 1... 10 2... 11 2.2... 12 1 2... 13 3... 18 4... 22 5... 23 6... 24 2.3... 34 1... 34 2...

More information

!!! 2!

!!! 2! 2016/5/17 (Tue) SPSS (mugiyama@l.u-tokyo.ac.jp)! !!! 2! 3! 4! !!! 5! (Population)! (Sample) 6! case, observation, individual! variable!!! 1 1 4 2 5 2 1 5 3 4 3 2 3 3 1 4 2 1 4 8 7! (1) (2) (3) (4) categorical

More information

農林漁家民宿の女性経営者が

農林漁家民宿の女性経営者が 28 29 30 31 32 NA 33 NA 34 NA NA 35 NA 36 37 38 39 NA 40 41 NA NA 42 NA NA 43 NA NA 44 NA PR PR PR 45 PR PR PR PR FAX 46 FAX NA NA 47 NA NA 48 NA 49 NA 50 NA 51 NA NA 52 NA NA 53 GT NA 54 NA 55 NA 56 57

More information

QW-3414

QW-3414 MA1312-C P 1 2 3 A E L D E D A A E D A D D D D D E A C A C E D A A A C A C A C E E E D D D A C A C A A A A C A C A C E E C C E D D C C C E C E C C E C C C E D A C A C A C E L B B

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

05避難シミュレーション編.PDF

05避難シミュレーション編.PDF 1....5-2 1.1...5-2 1.2...5-2 1.3...5-4 1.4...5-5 1.5...5-8 1.6...5-8 1.7...5-9 1.8...5-19 2....5-21 5-1 5-2 ) ( ) / ( ) / ( ) ( 2 ( ) ( ) 5-3 1-1 5-4 ( 17 3 ) 1 ( 1) 1-2 ( )2 3 ( 5 ) 5 1 5 ( ) ( ) 1-2

More information

Software for FinePix AX4.2 ソフトウェア取扱ガイド

Software for FinePix AX4.2 ソフトウェア取扱ガイド 1 2 3 AX Version 4.2 for Windows and Macintosh AX4.2 y y BL00369-100(1) J 2 3 ImageMixer VCD2 for FinePix 4 5 q x x 6 7 8 9 10 11 1 2 3 4 5 1 2 3 4 5 12 1 x x 1 13 2 q 2 w e q w e 14 3 q 3 w e 15 r 3 t

More information

1.2 R R Windows, Macintosh, Linux(Unix) Windows Mac R Linux redhat, debian, vinelinux ( ) RjpWiki ( RjpWiki Wiki

1.2 R R Windows, Macintosh, Linux(Unix) Windows Mac R Linux redhat, debian, vinelinux ( ) RjpWiki (  RjpWiki Wiki R 2005 9 12 ( ) 1 R 1.1 R R R S-PLUS( ) S version 4( ) S (AT&T Richard A. Becker, John M. Chambers, and Allan R. Wilks ) S S R R S ( ) S GUI( ) ( ) R R R R http://stat.sm.u-tokai.ac.jp/ yama/r/ R yamamoto@sm.u-tokai.ac.jp

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

無印良品のスキンケア

無印良品のスキンケア 2 3 4 5 P.22 P.10 P.18 P.14 P.24 Na 6 7 P.10 P.22 P.14 P.18 P.24 8 9 1701172 1,400 1701189 1,000 1081267 1,600 1701257 2,600 1125923 450 1081250 1,800 1125916 650 1081144 1,800 1081229 1,500 Na 1701240

More information

(lm) lm AIC 2 / 1

(lm) lm AIC 2 / 1 W707 s-taiji@is.titech.ac.jp 1 / 1 (lm) lm AIC 2 / 1 : y = β 1 x 1 + β 2 x 2 + + β d x d + β d+1 + ϵ (ϵ N(0, σ 2 )) y R: x R d : β i (i = 1,..., d):, β d+1 : ( ) (d = 1) y = β 1 x 1 + β 2 + ϵ (d > 1) y

More information

linguistics

linguistics R @ linguistics 2007/08/24 ( ) R @ linguistics 2007/08/24 1 / 24 1 2 R 3 R 4 5 ( ) R @ linguistics 2007/08/24 2 / 24 R R: ( ) R @ linguistics 2007/08/24 3 / 24 R Life is short. Use the command line. (Crawley

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2

q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2 R 2001 9 R R S Splus R S 1 R 1: R 2 [File] [Exit] 1 q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2 2.1 7+3 1 10 7-3 7*3 7/3 7^3 2 > 7+3 [1] 10 > 7-3 [1] 4 > 7*3 [1]

More information

3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)

3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction) 1 (two-way ANOVA) - - A B 1 3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M=4 - - 1 (interaction) 4 - A - B (main effect) - A B (interaction) two-way ANOVA 5 1 A - H0: µ A 0 = µ A 1 = = µ A n - H1:

More information

communicate_task_ref.ps

communicate_task_ref.ps Sametime Communicate ii Sametime Communicate Sametime Communicate................ 1 iii iv Sametime Communicate Sametime Communicate IBM Sametime IBM Sametime 1. IBM Sametime Sametime > [] [] [] [ ] []

More information

情報科学概論 第1回資料

情報科学概論 第1回資料 1. Excel (C) Hiroshi Pen Fujimori 1 2. (Excel) 2.1 Excel : 2.2Excel Excel (C) Hiroshi Pen Fujimori 2 256 (IV) :C (C 65536 B4 :2 (2 A3 Excel (C) Hiroshi Pen Fujimori 3 Tips: (1) B3 (2) (*1) (3) (4)Word

More information

270万回再生レポート

270万回再生レポート 270 270 2 2 Keynote(Mac) Camtasia PC VIdeo5 Point 2 Point 15 2 Point Point ) (2 2 3 2 3 Point 2 4 3 2 1 OK 100 4 10 20 2 75% Point 4 3 SEX Point SEX SEX SEX 2 SEX Point 2 2500 Point ( 100 Point

More information

2

2 1 2 119 119 5 500 1 30 102 1 113 3 4 120 2 3 113 5 230 1 1 3 4 5 6 7 8 1 support@kansen.sakura.ne.jp 2 9 3 ( ) 10 11 12 4 1. 2. 3. 4. 13 5 14 15 16 17 18 19 [ ] [ ] 20 [ ] [ ] [ ] 21 22 [ ] 23 < > < >

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ kkarato@eco.u-toyama.ac.jp 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

dicutil1_5_2.book

dicutil1_5_2.book Kabayaki for Windows Version 1.5.2 ...1...1 1...3...3 2...5...5...5...7...7 3...9...9...9...10...10...11...12 1 2 Kabayaki ( ) Kabayaki Kabayaki ( ) Kabayaki Kabayaki Kabayaki 1 2 1 Kabayaki ( ) ( ) CSV

More information

1 1 2 65

1 1 2 65 3 3 2000 6 14 2 30 4 2 1 1 2 65 1!?? < > 3 2 2 100 19 19 100 100 100 < > 19 2 2 2 2 < > 2000 2000 50 1945 5 50 1945 5 45 20 20 4 1945 4 5 5 5 100 50 20 5 2 20 5 20 5 5 6 20 6 19 5 5 6 5 6 2 20 6 21

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information