untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 + 11

12 kt kt 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23

24 24

25 25

26 123 26

27 27

28 28

29 29

01_教職員.indd

01_教職員.indd T. A. H. A. K. A. R. I. K. O. S. O. Y. O. M. K. Y. K. G. K. R. S. A. S. M. S. R. S. M. S. I. S. T. S. K.T. R. T. R. T. S. T. S. T. A. T. A. D. T. N. N. N. Y. N. S. N. S. H. R. H. W. H. T. H. K. M. K. M.

More information

09 P107〜118/木下 〃 芦塚 〃 稲

09 P107〜118/木下 〃 芦塚 〃 稲 NK NK NK NK NK NK NK KT M NK NK KT M NK KT VTR SR SR SR SR SR SR KT NK NK FU M M A B C D E NK F G H I J I K M I I S R L L C C NKCL F C J J F M I J NK M M DY NK E E NK D D C D SR E D C C M NK NK SJ KK NK

More information

取扱説明書

取扱説明書 ER-LD530 STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 1 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 22 23 1 2 24 25 26 27 1 2 3 28 29 30 31 32 33 34 1 2 3 35 1 2 3 36 37 1 2 3 4 38 39 1 2 3 4 40

More information

( ) ( ) ( ) i (i = 1, 2,, n) x( ) log(a i x + 1) a i > 0 t i (> 0) T i x i z n z = log(a i x i + 1) i=1 i t i ( ) x i t i (i = 1, 2, n) T n x i T i=1 z = n log(a i x i + 1) i=1 x i t i (i = 1, 2,, n) n

More information

料理集

料理集 ABC Cooking Studio 1 2 3 ABC Cooking Studio ABC Cooking Studio Point Point ABC Cooking Studio Point ABC Cooking Studio ABC Cooking Studio Point

More information

東京リース会報60 新春号表1_4.eps

東京リース会報60 新春号表1_4.eps KV25C/CS KV40C/CS KV25D/DS KV40D/DS KANTO TEKKO CO., LTD H600 H650 http://www.kanto-tk.co.jp 306-010141-14 TEL: 0280-77-0081 FAX: 0280-77-0080 KT30 CW25 33 TH-110001-A ZV55R ZV650W CP220-3 CS125-3 TH-100028-A

More information

index 3 7 11 15 19 23 www.e-keisokuki.jp/ 2

index 3 7 11 15 19 23 www.e-keisokuki.jp/ 2 index 3 7 11 15 19 23 www.e-keisokuki.jp/ 2 3 1 2 3 4 4 5 5 6 7 1 2 8 3 4 9 10 11 1 1 2 12 1 POINT 13 14 2 15 1 2 16 17 2 18 3 19 1 POINT 2 20 3 3 POINT 21 3 www.keyence.co.jp/keisokuki/req/download/index.jsp

More information

slide1.dvi

slide1.dvi 1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +

More information

縺05, 縺05 縺 [ : チ

縺05, 縺05 縺 [ : チ 1306050100010708 2006 03. 070503 176, 02 12 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 030107080302060405 タ05 縺04020703 0702050109070504090100 090504010901 0802050502 040907050105080504040701

More information

サイバネットニュース No.121

サイバネットニュース No.121 2007 Spring No.121 01 02 03 04 05 06 07 08 09 10 12 13 14 18 01 02 03 04 05 06 07 L R L R L R I x C G C G C G x 08 09 σ () t σ () t = Sx() t Q σ=0 P y O S x= y y & T S= 1 1 x& () t = Ax() t + Bu() t +

More information

28 6 15 14 40 15 40 2 Personalized Agingusing genomics and technology to optimize healthy aging implications for oral health X7003 9001 6 16 11 00 12 00 2 X0077 9002 1 6 15 9 00 10 00 2 X0039 9003 2 6

More information

品図名作成日製図カンイホール HG KT 名HG-002 品 φ250 差口 φ300 マスゴム輪受口 FRP 補強 備考勾配 :10 カンイホール HG KT 番

品図名作成日製図カンイホール HG KT 名HG-002 品 φ250 差口 φ300 マスゴム輪受口 FRP 補強 備考勾配 :10 カンイホール HG KT 番 品図名作成日製図カンイホール HG KT Z H3 H 名サイズ 150-300 品HG-001 H H3 Z 250 295 426 471 112 137 329 330 備考 1. 本商品は ( 公社 ) 日本下水道協会規格品 (JSWAS K-9) です 2. 勾配 :10 カンイホール HG KT 番 品図名作成日製図カンイホール HG KT 250-300 名HG-002 品376 360

More information

取扱説明書

取扱説明書 CE-8100 C n n 14-0% n n n n n n n n n n n n n n n n n 1 2 3 4 5 6 7 8 9!P!Q!W!E!R!T!Y!U!I!O "P "Q "W "E 1 2 3 4 5 6 7 8 8 8 9!P!Q!W!E!R!T!Y!U!I!O!O!O "P "P "P "P "P "P "Q "W "E OP M PGM m OP M PGM

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

F0 P( T, K) C ( TK, ) exp ( rt) < dk + 3 dk F K K # # 0 r K T P C S 0 0 F0= exp ( rt) S0T 0 F0

F0 P( T, K) C ( TK, ) exp ( rt) < dk + 3 dk F K K # # 0 r K T P C S 0 0 F0= exp ( rt) S0T 0 F0 日 経 5 株 価 指 数 のモデル フリー インプライド ボラ Titleティリティの 計 算 方 法 に 関 して : ボラティリティ 予 測 力 の 観 点 から Author(s) 山 口, 圭 子 Citation 一 橋 経 済 学, 3(1): 9-43 Issue 008-07-0 Date Type Departmental Bulletin Paper Text Version

More information

main.dvi

main.dvi 5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2 104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Microsoft PowerPoint 潮流カレンダーA4.pptx

Microsoft PowerPoint 潮流カレンダーA4.pptx 0. 99..... 0 0.9 0. 0. 9 0. 0. 0. 0. 0.9 0.. 99..... 0 0.9 0. 0. 9 0. 0. 0. 0. 0.9 0. 平成 年 潮流予測海域 市町村別ミズダコ漁獲量 ( 平年値 ) 90 0 0 0 '0"N '0"N 0 0 0 0 '0"N '0"N '0"N 0 0 0 0 '0"E '0"E 0'0"E 0. マイル '0"E 0'0"E

More information

39キュービクルP1397.indd

39キュービクルP1397.indd 1398 1399 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 1400 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 1401

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

2018 Guide Spec

2018 Guide Spec 2018 Guide Spec - 1 New Guide Consept - 2 KR Consept - 1 - - 1 New Guide Consept 8 5 6 18.5cm 14 12.5 11 10.5 10 9.5 KL25H KL12H KL5.5M KB4.5.5 KG4.5F KL25H KL12H KL5.5M KB5 KT5 LG5-2 - - 2 KR Consept

More information

TCSE4~5

TCSE4~5 II. T = 1 m!! U = mg!(1 cos!) E = T + U! E U = T E U! m U,E mg! U = mg!(1! cos)! < E < mg! mg! < E! L = T!U = 1 m!! mg!(1! cos) d L! L = L = L m!, =!mg!sin m! + mg!sin = d =! g! sin & g! d =! sin ! = v

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: [email protected] 1 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633 1941. E.J.W.Verwey

More information

微粒子合成化学・講義

微粒子合成化学・講義 http://www.tagen.tohoku.ac.jp/labo/muramatsu/mura/main.html E-mail: [email protected] 1 2 1 mol/l KCl 3 4 Derjaguin Landau Verway Overbeek B.V.Derjaguin and L.Landau;Acta Physicochim.,URSS, 14, 633

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(30 ) (30 )

(30 ) (30 ) 10.1.1 15 10 10 15 10 122 10.2.1 100 5 60 100 25 100 40 50 16 (30 ) 3540 25 (30 ) 35 14 35 27 27 27 120 123 10.2.2 F24F80 F100 320 400 800 800 1500 () 10.2.3 40 40 3.2 (3.0) 40 4.0 3.2 20 4.0 25 () 3.0m

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

Microsoft Word - 表紙、背表紙(内側) 完成.doc

Microsoft Word - 表紙、背表紙(内側) 完成.doc 26 26 20 11 22 23 2003 JAR JAR 20 11 1 2 3 1 11 22 2 11 23 4 5 6 7 8 9 10 8 1996 11 12 13 14 15 16 ACL 27 20.5 1.5 157.9 3.9cm 51.8 5.3kg SM BF Personal-EMG RMS 100 0.2 4 BF SM 5 0758 9.5 5.1 0.2 BF SM

More information

EROJET.{...qxd

EROJET.{...qxd 60 60 60 T 0.5-8- 60 ER 60 E 6.5 0.5-8- 60 ER 60 E 1.75-.0-8 G 60 ER G 60 E 1.7 0.5-.0 8-8 G 60 ER G 60 E 1.7.5-5.0 7-5 N 60 ER N 60 E 1.7.5 5.5-6.0.5- Q 60 ER Q 60 E 15.875.0 0.5-8- 60 ERV.7 1.75-.0 0.5-.0-8

More information

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c 10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197 10.1

More information

RoHS COMPLIANCE 2014 Introduction of KYOSHIN Tab Terminals KYOSHIN Tab Terminals Types Drawing of Tab Terminals Tab Terminals Adaptable to Positive Lock,etc. Tab terminals adaptable to Positive Lock,

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

Microsoft Word - kaiyuu-isidu-海難史談(海友フオーラム) 改1

Microsoft Word - kaiyuu-isidu-海難史談(海友フオーラム) 改1 3.1 Lusitania Cruiser Convention Lusitania Lusitania Cunard Line Lusitania 32,000GT Mauretania Lusitania Lusitania Lusitania Lusitania 31 Lusitania Lusitania Lusitania W.Turner Lusitania Lusitania Woodrow

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

1.1 WG WG ( ) Copyright (c) 2002 NPO Page SQLSlammer WG 13 CordRed Copyright (c) 2002 NPO Page 4

1.1 WG WG ( ) Copyright (c) 2002 NPO Page SQLSlammer WG 13 CordRed Copyright (c) 2002 NPO Page 4 2002 6 3 1. 1.1 WG 1.2 14 Copyright (c) 2002 NPO Page 2 1.1 WG WG ( ) Copyright (c) 2002 NPO Page 3 1.2 14 14 SQLSlammer WG 13 CordRed Copyright (c) 2002 NPO Page 4 2. SQLSlammer 2.1 2.2 2.3 147 MS02-039

More information

K-4 クイック柄一覧 7R N K-6000KN 4 10 小 R S K-6000 K-6111 PW 6001N K-6001KN 4 10 小 R S K-6000 K-6108 SW 6002N K-6002KN 小 R S K K-6000 PW 6003

K-4 クイック柄一覧 7R N K-6000KN 4 10 小 R S K-6000 K-6111 PW 6001N K-6001KN 4 10 小 R S K-6000 K-6108 SW 6002N K-6002KN 小 R S K K-6000 PW 6003 K- 7R 000N K-000KN 0 K- 00N K-00KN 0 K-08 00N K-00KN S K-08 0 K-000 00N K-00KN S K- 0 K-000 00N K-00KN 0 K-08 007N K-007KN 0 K-08 009N K-009KN 0 S K-0 00N K-00KN 0 S K-0 00N K-00KN 0 S K-08 00N K-00KN

More information

< F D96EC8B C7095FA919793FA92F68C8892E8838A838A815B83582E786C73>

< F D96EC8B C7095FA919793FA92F68C8892E8838A838A815B83582E786C73> 練習試合練習試合 総試合数 5 試合 2 月 曜 対戦 場所 試合開始 放送開始 中継方式 備考 10 日 北海道日本ハム 阪神 名護 生中継 キャンプ番組内で放送 11 月 祝 北海道日本ハム HE( 韓国 ) 名護 生中継 キャンプ番組内で放送 14 木 北海道日本ハム KT( 韓国 ) 名護 生中継 キャンプ番組内で放送 16 土 北海道日本ハム DB( 韓国 ) 名護 生中継 キャンプ番組内で放送

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

Taro11-aマニュアル.jtd

Taro11-aマニュアル.jtd L A m ton m kn t t kn t kn t m m kn ton ton m m m kn/ CK CK = N/mm ca sa a cm kn/ kn/ kn/ kn/ kn/ kn/ kn/ - - kn/m WL % /m - - A c sin cos kn/m kn/m kn/m / - / A A H V H A cos V A sin - - = N/mm P P m

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

i

i 29 23 23115148 i 1 1 2 3 2.1..................................... 3 2.2.................................. 6 2.2.1............................... 6 2.2.2.................................. 8 3 10 3.1........................................

More information

p12.dvi

p12.dvi 301 12 (2) : 1 (1) dx dt = f(x,t) ( (t 0,t 1,...,t N ) ) h k = t k+1 t k. h k k h. x(t k ) x k. : 2 (2) :1. step. 1 : explicit( ) : ξ k+1 = ξ k +h k Ψ(t k,ξ k,h k ) implicit( ) : ξ k+1 = ξ k +h k Ψ(t k,t

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information