Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download ""

Transcription

1 7 2 2 i σ ρ 1 i = 0

2

3

4 X = U + T ( ) min U λ T T 2

5

6 βˆ ˆ SE ( β ) θ X i θ X i p i= 1 p i= 1

7

8

9

10

11

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

untitled

untitled 1 (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) 10 11 12 2 2520159 3 (1) (2) (3) (4) (5) (6) 103 59529 600 12 42 4 42 68 53 53 C 30 30 5 56 6 (3) (1) 7 () () (()) () ()

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

20130521_11_19_2.indd

20130521_11_19_2.indd MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX ac 450+ 450Mbps 450 Mbps 300+ 300Mbps 300 Mbps 300 Mbps 1300+ ac 450Mbps 866+ 300Mbps 300 Mbps 300& PLC 240 Mbps 300 Mbps

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

ITPS 2

ITPS 2 1 ITPS 2 1. 2. 3 4 5 6 7 8 9 10 11 12 S2-6 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 1 1 35 / 36 37 10-6-2 38 39 6-2-3 1 1 1 40 41 42 43 SE 44 45 46 47 48 49 50 ( ) ) 51 52

More information

大野川水系中流圏域

大野川水系中流圏域 -------------------------------------------------------------------- 1 -------------------------------------------------------------------------- 1 -----------------------------------------------------------------------------

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

untitled

untitled Bradley-Terry W 03D8103002L 2007 3 Bradley-Terry W Bradley-Terry FIFA Bradley-Terry 1998 W 2002 W 2006 W Bradley-Terry W 1...1 2 Bradley-Terry...2 2.1...2 2.2 BT...3 2.3...4 2.4...5 3...8 3.1...8 3.2 FIFA...8

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

3 5 10 20 2

3 5 10 20 2 28 1 22 82 1989 2011 PHP 9,000 27 4 560 450 110 52 47 23 7 (11 11 3 56 22 1 3 5 10 20 2 60 70 40 50 3 28 90 90 50 45 3 2 30 40 4 40 50 5 10 1 10 3 4 36 5 6 5 3 5 10 10 10 70 70 70 1 50 60 60 20 7 20 22

More information

日本の不動産市場における価格情報とボラティリティの非対称について:大阪市の実証研究から

日本の不動産市場における価格情報とボラティリティの非対称について:大阪市の実証研究から 1 2 3 1. [2001]) 4 2 " " " " DI 3 5 6 7 8 9 10 11 1) * ( ) ( ) ( ) ( ) ( ) ( 1) * ( + + = + + t t r t P t R t P t P t P ρ ) 1 ( * + t ρ 4 PVR [2001] 12 13 14 15 16 17 18 19 20 23 24 25 26 27 ( ) stdev

More information

untitled

untitled 1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

日本分子第5巻2号_15特別講演・シンポジウム.indd

日本分子第5巻2号_15特別講演・シンポジウム.indd 25 JSMI Report JSMI Report 26 41 JSMI Report JSMI Report 42 JSMI Report 54 55 JSMI Report JSMI Report 56 57 JSMI Report JSMI Report 58 59 JSMI Report JSMI Report 60 61 JSMI Report β JSMI Report 62 63 JSMI

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Microsoft PowerPoint - H22コロキウム [互換モード]

Microsoft PowerPoint - H22コロキウム [互換モード] xf. Xd z. 3. v 4. 5. Xd i y co y z z θ α «Œ X «+ co θ «z ªªª ª 5 z ªªª ª 8 Xd Xd q λ f ( q) ρ( ) exp( πiq ) dv λ «uθ «z ªªª ª 6 z ªªª ª 9 Xd Xd z z Xd ª «ªªªª «ªˆ «ªªªªª «~~Xd q Xd«Xd«ª ª ªªª f ( q) ρ(

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

本文/報告3

本文/報告3 Integral 3D Contents Production from Multi View Images Kensuke IKEYA Kensuke HISATOMI Miwa KATAYAMA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/2014.3 47 48 NHK R&D/No.144/2014.3 NHK R&D/No.144/2014.3 49

More information

Microsoft PowerPoint - H22コロキウム [互換モード]

Microsoft PowerPoint - H22コロキウム [互換モード] ÿ z ªªª ª ««HE ~ «. z ªªª ª 1 z ªªª ª 4 u ««««ªªªª «d 5/6«3«ªªªª «d 6/3«. z ªªª ª z ªªª ª 5 xfy dowload hp://www.akua.cc.ukuba.ac.jp/~moiomo/ Xd z ªªª ª 3 z ªªª ª 6 1 Xd Xd z z Xd ª «ªªªª «ªˆ «ªªªªª «~~Xd

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

気象庁委託調査

気象庁委託調査 ART - 103 1. (2-1) 2-1 : 61 20km 1 2 6 10km 6 12 7 1 100km 1 1 34 7 300km 7 3 3 1300km 1 *1 *1 6 3 *2 300km 6 *3 *1 15 3 GPV 15 *2 15 *3 16 *2 1 7 1 15 2. (1 ) 15 1 15 ( GPV=Grid Point Value) 104 1 / 2-1

More information

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000 ( ) 73 10,905,238 3,853,235 295,309 1,415,972 5,340,722 2,390,603 890,603 1,500,000 1,000,000 300,000 1,500,000 49 19. 3. 1 17,172,842 3,917,488 13,255,354 10,760,078 (550) 555,000 600,000 600,000 12,100,000

More information

31 gh gw

31 gh gw 30 31 gh gw 32 33 1406 1421 640 0 (mm) (mm) MAX1513 MIN349 MIN280 MAX900 gh gw 34 gh gh gw gw gh gh gw gw gh gh gw gw 35 175 176 177 178 179 180 181 195 196 197 198 202 203 2 1 L L L2 L2 L2 L 2 2 1 L L

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

P000.\...ai

P000.\...ai 2007.11 http://www.tateyama-advance.co.jp/ PRODUCTS LINEUP P5 P9 P13 WH WH WH WH WH WH WH WH WH WH WH WH WH WH WH WH 5 6 WH WH WH WH WH WH WH WH WH WH WH WH WH S WH 7 8 WH WH WH WH WH WH WH WH WH WH WH

More information

( œ ) œ ,906,148,000 1,800,000,000 1,706,469,380 1,350,676, ,793,167 1,555,793,167 3,000,000, ,537, ,

( œ ) œ ,906,148,000 1,800,000,000 1,706,469,380 1,350,676, ,793,167 1,555,793,167 3,000,000, ,537, , ¾ œ ( œ ) (Ÿ ) lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll J N I Q ( œ ) œ 14 15. 3.28 2,906,148,000 1,800,000,000 1,706,469,380 1,350,676,213 355,793,167 1,555,793,167 3,000,000,000

More information

極限

極限 si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4, Mellor and Yamada1974) The Turbulence Closure Model of Mellor and Yamada 1974) Kitamori Taichi 2004/01/30 ,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), 4 1 4 Mellor and Yamada 1974) 4 2 3, 2

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

1 2 3 6 10 < > 13 16 16 4 17 13 00 15 30 5

1 2 3 6 10 < > 13 16 16 4 17 13 00 15 30 5 2004 16 3 23 q 4 21 r 1 2 3 6 10 < > 13 16 16 4 17 13 00 15 30 5 13 2 2 16 4 4 17 3 16 3 1 16 3 2 905 1438 1201 1205 1210 70 1812 25 1635 1654 3 44 47 10 10 911.18-R 1193 34 1652 4 911.107-H 1159 1685

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (

Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T ( 2004 1 4 4.1 Balestra and Nerlove (1966) 1960 1980 (GMM) Arellano and Bond (1991) Arellano (2003) N T N T Smith and Fuerter (2004) 1 (the random coefficient model) 1 1995 2001 Singer and Willett (2003

More information

16 4 1 2003 JASS5 1 16 4 1 2 16 4 1 1999 90 90 JASS5RC 180 135 90 RC -1 (D) JASS5 L2 90 2/3 2030-1 JASS5 JASS5 JASS5 JASS5 JASS5 JASS5 90 JASS5 RC RC JASS5 JASS5 JASS5 190 RC JASS5 2 JASS5 (L22/3) 3 (2)

More information

1. 2. C2

1. 2. C2 2000 7 6 (I) (II) ( 47, 1999) C1 1. 2. C2 1 ˆk AIC T C3 1.1 ( : 3 ) Y N ( µ(x a,x b,x c ),σ 2) µ(x a,x b,x c )=β 0 + β a x a + β b x b + β c x c x a,x b,x c α α {a, b, c} Θ α = {(σ, β) σ >0,β i =0,i α

More information

mains.dvi

mains.dvi 8 Λ MRI.COM 8.1 Mellor and Yamada (198) level.5 8. Noh and Kim (1999) 8.3 Large et al. (1994) K-profile parameterization 8.1 8.1: (MRI.COM ) Mellor and Yamada Noh and Kim KPP (avdsl) K H K B K x (avm)

More information

授業研究第1日目

授業研究第1日目 1 1 1 0. (sextant) ( ) 2 1. IB I AB I AI E H H E B GHE CIHE ( ) 2 2 I H A (0 ) ( ) 3 2 2 θ = α + γ β + γ = θ + α β + γ = ( α + γ ) + α β = 2 α + γ γ C H CIG ( ) 4 2. John Hadley 1731 5 ( (octant)) Captain

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

建築設備学_07(熱負荷計算).ppt

建築設備学_07(熱負荷計算).ppt p. p. p.7 p. q w q w q GT q IT =q IS +q IL () () q HT = q HS + q HL q ET =q ES +q EL 1 () q s [W]C p ρ m /h Δt 1000/00 [W]0.4 m /h Δt q L [W]γ γ [m /h] Δx[g/kg(DA)] 1000/00 [W]4 [m /h] Δx[g/kg(DA)] C p

More information

22 / ( ) OD (Origin-Destination)

22 / ( ) OD (Origin-Destination) 23 2 15 22 / ( ) OD (Origin-Destination) 1 1 2 3 2.1....................................... 3 2.2......................................... 3 2.3.......................................... 5 2.4............................

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

2 σ γ l σ ο 4..5 cos 5 D c D u U b { } l + b σ l r l + r { r m+ m } b + l + + l l + 4..0 D b0 + r l r m + m + r 4..7 4..0 998 ble4.. ble4.. 8 0Z Fig.4.. 0Z 0Z Fig.4.. ble4.. 00Z 4 00 0Z Fig.4.. MO S 999

More information

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6

24 6 I., X, x X. Radom Samplig with Replacemet ( ) 1,.,, 1 X 1, 2 X 2,..., X., X 1, X 2,..., X ( ).,.,,. Estimate of Populatio Parameters ( ),..,,.. 6 23 第 6 章 母数の推定 I 二項母集団の母比率 6.1 Audiece Ratig Survey (視聴率調査) テレビ局では視聴率の獲得にしのぎを削っているようである. 果たして, コンマ以下の数字に 意味はあるのだろうか? 2016 年 4 月 25 日 (月) 5 月 1 日 (日) ドラマ (関東地区) 視聴率ベスト 10 番組名 放送局 連続テレビ小説 とと姉ちゃん 真田丸 日曜劇場

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2 critter twitter ( PRML) PRML PRML PRML PRML 1. 2. 3. PRML PRML 110 PRML 700 1 PRML pdf PRML (http://critter.sakura.ne.jp) 1 1.1 N x t y(x, w) = w 0 + w 1 x + w 2 x 2 + + w M x m = M w j x j (1.1) j=0 E(w)

More information

TII 0007J03

TII 0007J03 µs µs θ µs µs Feature 1 (%) TII B0113JC 100 10 1 GaAsP -74 GaAsP -73 GaAs -71 0.1 Cs-Te -03-02 0.01 100 200 300 400 500 600 700 800 900 1000 1 (nm) Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Vk

More information