Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download ""

Transcription

1 πλατύς

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 ύ

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

大野川水系中流圏域

大野川水系中流圏域 -------------------------------------------------------------------- 1 -------------------------------------------------------------------------- 1 -----------------------------------------------------------------------------

More information

組N

組N 2 421 @0836532028 88 202 14 38 70 25 3 21 21 4 π 20 12 21 01 02 5 6 7 21 300 100 50 100 1 0839333188 1 0839213090 034145 040176 065 8 9 山口県の中小企業 10 11 128 0836831403 41 19 10839222606 21 6020 12 13 60

More information

XI 2 (KOMIYAMA, Hirosh) 2004 4 21 1 1.1 1 20 silent spring 1970 1 1.2 1999 2000 2050 2030 2050 2050 1.3 3 20 2 2 20 2.1 20 21 20 20 20 18 60 2000 60 3.5 7.5 1900 7.5 20 20 500 60 20 19 20 3.5 7.5 20 30

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

本文/報告3

本文/報告3 Integral 3D Contents Production from Multi View Images Kensuke IKEYA Kensuke HISATOMI Miwa KATAYAMA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/2014.3 47 48 NHK R&D/No.144/2014.3 NHK R&D/No.144/2014.3 49

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

INNOVATION NAVIGATOR 研究シーズ集 2015 東京理科大学山口東京理科大学諏訪東京理科大学 Tokyo University of Science λ π π δ α http://www.tus.ac.jp/ura/

More information

気象庁委託調査

気象庁委託調査 ART - 103 1. (2-1) 2-1 : 61 20km 1 2 6 10km 6 12 7 1 100km 1 1 34 7 300km 7 3 3 1300km 1 *1 *1 6 3 *2 300km 6 *3 *1 15 3 GPV 15 *2 15 *3 16 *2 1 7 1 15 2. (1 ) 15 1 15 ( GPV=Grid Point Value) 104 1 / 2-1

More information

Microsoft Word - CTCWEB講座(4章照査)0419.doc

Microsoft Word - CTCWEB講座(4章照査)0419.doc 1912 1914 3 58 16 1 58 2 16 3 4 62 61 4 16 1 16 1914 ( 3) 1955 (30) 1961 (36) 1965 (40) 1970 (45) 1983 (58) 1992 ( 4) 1999 (11) 2004 (16) 2 1 2 3 4 5 6 7 8 9 1 10 2 11 12 13 14 15 16 17 18 19 20 21 22

More information

16 4 1 2003 JASS5 1 16 4 1 2 16 4 1 1999 90 90 JASS5RC 180 135 90 RC -1 (D) JASS5 L2 90 2/3 2030-1 JASS5 JASS5 JASS5 JASS5 JASS5 JASS5 90 JASS5 RC RC JASS5 JASS5 JASS5 190 RC JASS5 2 JASS5 (L22/3) 3 (2)

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that 1. 2. 3. 4. ὁ, ἡ, τό ὅς, ἥ, ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ, οὐκ, οὐχ μή ὡς τε and καὶ Α καὶ Β A B both also 3

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

!_.~ ~I: ~~,,--..._~~~~ ~ ~ 悔 ~ 来 O~ 阿 ~ ~ ーノ ~

More information

J.qxd

J.qxd IQ 2 I/Q IQ IQ IQ IQ 3 IQ 4 5 6 I Q 7 IQ 0 deg 8 IQ I QI I Q Q Q Q { I Q { I I 9 I/QI/QI/Q IQ IQ I/Q Q Σ I IQ I Q 10 I/Q I/Q I/Q IQ IQ 11 π 12 01 00 11 10 13 I/Q I QI I/Q IQ 14 π QI π I/QI Q IQ IQ π 15

More information

<4D F736F F D EA98DECB2DDCBDFB0C0DEDDBDA5B1C5D7B2BBDEB082F A282BDBDCBDFB0B6B082CC666F82C6B2DDCBDFB0C0DEDDBD82CC91AA92E85B8CF68A4A5D732E648163>

<4D F736F F D EA98DECB2DDCBDFB0C0DEDDBDA5B1C5D7B2BBDEB082F A282BDBDCBDFB0B6B082CC666F82C6B2DDCBDFB0C0DEDDBD82CC91AA92E85B8CF68A4A5D732E648163> 166Hz 167Hz 168Hz Z Z X RX = G X C = 2 π f 1 Z () 2 2 Z RLS L = ( H ) RLS 2 π f 2 R 2 CP ( F) R CP Z X Z X Z X = e 2 1 + e 2 2 e2 = e 1 2 2 4 3. Z = e + X 1 e2 e2 1 e1 RX Z X = = Za = Z X RX Zb

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

untitled

untitled Y U Z A T O W N P U B L I C R E L A T I O N S 1300 1310 1330 61312006141200 6141300 612 10001530 1 200961 2 1127 200961 3 w r e q i!0 o u 200961 4 t y!3 1725880 5 200961!4!1!2 200961 6 Youth President's

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

プラズマ核融合学会誌1月【83-2】/講座2-3

プラズマ核融合学会誌1月【83-2】/講座2-3 2.3 Plasma Flow Measurements Spectroscopic Methods KADO Shinichiro author s e-mail: kado@q.t.u-tokyo.ac.jp Czerny-Turner GN: grating normalmn: mount normalfn: facet normal. f L L Fig. 3 μ μ in-situ μ

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

andκαὶακαὶβa B bothalso 3 even auto- iste D in orthan asso forwhen thatsothat (G) (G) (A) (A) (G) (G) (D) (A) (A) (A) (G) (A) + subj. (G) (G) (D) (D)

andκαὶακαὶβa B bothalso 3 even auto- iste D in orthan asso forwhen thatsothat (G) (G) (A) (A) (G) (G) (D) (A) (A) (A) (G) (A) + subj. (G) (G) (D) (D) 1. ὁ,ἡ,τό 2. ὅς,ἥ,ὅ 3. αὐτός, -ή, -ό 4. καί 5. δέ 6. τίς, τί 7. τις, τι 8. οὗτος, αὕτη, τοῦτο 9. ἤ 10. ἐν 11. μὲν... δέ 12. γάρ 13. οὐ,οὐκ,οὐχ 14. μή 15. ὡς 16. τε 17. εἰς 18. ἐπί 19. κατά 20. ἐγώ 21.

More information

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά 1. 2. 3. 4. ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ,οὐκ,οὐχ μή ὡς τε 17. 18. 19. 20. εἰς ἐπί κατά ἐγώ 21.

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

Lieber Herr Schmidt, 佐藤太郎様 Λιγότερο επίσημη επιστολή, ο αποστολέας είχε ήδη πάρε-δώσε με τον παραλήπτη προηγουμένως Lieber Johann, 佐藤太郎様 Ανεπίσημη επι

Lieber Herr Schmidt, 佐藤太郎様 Λιγότερο επίσημη επιστολή, ο αποστολέας είχε ήδη πάρε-δώσε με τον παραλήπτη προηγουμένως Lieber Johann, 佐藤太郎様 Ανεπίσημη επι - Εισαγωγή γερμανικά ιαπωνικά Sehr geehrter Herr Präsident, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Sehr geehrter Herr, Επίσημη

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

広 報 平成28年 人口と世帯(7/1現在) 13,383人( 68) 6,288人( 26) 女 7,027人( 42) 世 帯 6,127戸( 10) 総人口 8 男 ( )内は前月比 518 賢くなりますように 7月24日 乗台寺文殊様 賢くなりますように 7月24日 賢くなりますように 7月24日 乗台寺文殊様 乗台寺文殊様 賢くなりますように 7月24日 乗台寺文殊様 A B C

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

R. R. Wilson, " Radiological Use of Fast Protons" (Radiology 1946:47:487-91)

R. R. Wilson,  Radiological Use of Fast Protons (Radiology 1946:47:487-91) KEK 2010/6/25 KEK R. R. Wilson, " Radiological Use of Fast Protons" (Radiology 1946:47:487-91) X http://www.gsi.de PHITS 25cm p z He C 4 He 4 He 4 He p 12 C 12 C 12 C PHITS (particle and heavy ion transport

More information

Microsoft PowerPoint - H22コロキウム [互換モード]

Microsoft PowerPoint - H22コロキウム [互換モード] xf. Xd z. 3. v 4. 5. Xd i y co y z z θ α «Œ X «+ co θ «z ªªª ª 5 z ªªª ª 8 Xd Xd q λ f ( q) ρ( ) exp( πiq ) dv λ «uθ «z ªªª ª 6 z ªªª ª 9 Xd Xd z z Xd ª «ªªªª «ªˆ «ªªªªª «~~Xd q Xd«Xd«ª ª ªªª f ( q) ρ(

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

Microsoft PowerPoint - H22コロキウム [互換モード]

Microsoft PowerPoint - H22コロキウム [互換モード] ÿ z ªªª ª ««HE ~ «. z ªªª ª 1 z ªªª ª 4 u ««««ªªªª «d 5/6«3«ªªªª «d 6/3«. z ªªª ª z ªªª ª 5 xfy dowload hp://www.akua.cc.ukuba.ac.jp/~moiomo/ Xd z ªªª ª 3 z ªªª ª 6 1 Xd Xd z z Xd ª «ªªªª «ªˆ «ªªªªª «~~Xd

More information

~ ~ ニ ~ σ ~ ~ 法 ー ~ ~ t~ ~ t ト ~ ~ ~ ~ ~ ~ ~ ュ ~ ~ ~ ~ ~ イ '~ ~_,..., -... へ ~~~ ー ~~~ -~~ へ ~~~~~ 1 ~ ~fr ~fr 会 1 ゴ '~~~~tf\~. 雪 lj7 IC~;:r.'r 金無リ料 ~;; I 宣 1~T ~ }~ ~, ~~ ~ ('~\ rl ~.

More information

TII 0007J03

TII 0007J03 µs µs θ µs µs Feature 1 (%) TII B0113JC 100 10 1 GaAsP -74 GaAsP -73 GaAs -71 0.1 Cs-Te -03-02 0.01 100 200 300 400 500 600 700 800 900 1000 1 (nm) Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Vk

More information

@08460207ヨコ/立花 220号

@08460207ヨコ/立花 220号 παιδεραστεία παιε ραστεύωε ράω ιλέωιλία ε ράω by ιλέω ιλητόν ιλητόν τελεὶα ιλία μέσον α κρότη θεωρειν definition John M. Cooper morally good (in some respect, in some degree) character friendship Cooper

More information

09基礎分析講習会

09基礎分析講習会 データ解析の意味を理解しないでパソコンで計算して 序論 誤差解析 何のために も意味がない 以下の本でちゃんと勉強しよう R. A. Millikan ミリカン 水滴の蒸発 大学院生H. Fletcher 水滴を油滴に 博士論文単名 140の観測のうち49個除外 データ削除 実験データを正しく扱うために 化学同人編集部編 油滴実験 Regener がもともとThompsonの実験室(Cambridge

More information

元素戦略アウトルック 材料と全面代替戦略

元素戦略アウトルック 材料と全面代替戦略 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 2.2.4 スカンジウム ジウム内包フラーレンに関する研究 などがある スカンジウムはレアメタルの中でも特に希少な金属で 製 錬のプロセス技術を確立すること自体が研究課題である プ ロセスに関する研究は東京大で行われている その他 スカンジウム錯体を用いた触媒への応用 スカン 24 2.2.5

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

予稿集(1)の表紙

予稿集(1)の表紙 京都大学人文科学研究所共同研究プロジェクト: 情報処理技術は漢字文献からどのような情報を 抽出できるか 人文情報学の基礎を築く 文字と非文字のアーカイブズ モデルを使った文献研究 文字資料アーカイブズの現在 特に検索可能性を中心に 岡本 真 動画のテキスト処理 安岡孝一 写真の検索可能性について考える 守岡知彦 ネットワーク分析からみた共観福音書間の比較研究 三宅真紀 異なる文献間の数理的な比較研究をふり返る

More information

untitled

untitled 2010 79 88 Living Environment of Welfare for Elderly Persons Λ1 Masatomi MATSUMOTO 1 2 2 1 1) 1 ο ο ο 1 Λ1 701-0193 288 E-Mail: jungbu@mw.kawasaki-m.ac.jp 79 80 2 2 2) 1 2 3 4 3) 2 3 3 1 2 3 POE POE 3

More information

untitled

untitled Bradley-Terry W 03D8103002L 2007 3 Bradley-Terry W Bradley-Terry FIFA Bradley-Terry 1998 W 2002 W 2006 W Bradley-Terry W 1...1 2 Bradley-Terry...2 2.1...2 2.2 BT...3 2.3...4 2.4...5 3...8 3.1...8 3.2 FIFA...8

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

Microsoft PowerPoint - 第13回

Microsoft PowerPoint - 第13回 分子分光学 2: 電子遷移 14.1 二原子分子の電子スペクトル (a) 項の記号 電子状態に名前をつけましょう 項記号 : 原子の電子状態を表す記号 電子の軌道角運動量 Lとスピン角運動量 S および全電子角運動量 Jを使って表記する 項 2 原子分子の電子状態項記号の付け方方針 重要 1.Λの決定全電子の分子軸周りの軌道角運動量 Λ( 電子の全軌道角運動量 Lの分子軸 ( 量子化軸 ) への射影成分

More information

untitled

untitled 1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

15_15KEK

15_15KEK 25, Nov. 24th - - T. Hyodo, Int. J. Mod. Phys. A 28, 3345 (23) T. Hyodo, Phys. ev. Lett., 322 (23) - - - Λ(45) Y. Kamiya, T. Hyodo, arxiv:59.46 [hep-ph] K or N 2 イントロダクション ハドロンの構造とエキゾチック状態 ハドロンの分類 観測されているハドロン

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

untitled

untitled 98 17 (2005) 81 () () E-mail : uesugi@mx4.ttcn.ne.jp 1) 1 2 3 QE 4 LSI 5 6L 18 7 8 9 10 11 12 2) 13 14() 15 1617 18 AN SN 19. 2 20 21 22 () 3) 23 SN 24() - 2 25 26 27(1) 28 (2) 4) 29 30QE 31() 32 () 33

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

Title リズム現象の数理 : 縮約理論によるアプローチ ( 第 52 回物性若手夏の学校 (2007 年度 ), 講義ノート ) Author(s) 蔵本, 由紀 Citation 物性研究 (2008), 89(6): 810-840 Issue Date 2008-03-20 URL http://hdl.handle.net/2433/111024 Right Type Departmental

More information

2 σ γ l σ ο 4..5 cos 5 D c D u U b { } l + b σ l r l + r { r m+ m } b + l + + l l + 4..0 D b0 + r l r m + m + r 4..7 4..0 998 ble4.. ble4.. 8 0Z Fig.4.. 0Z 0Z Fig.4.. ble4.. 00Z 4 00 0Z Fig.4.. MO S 999

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

202mk5_OM-J_RevD

202mk5_OM-J_RevD D01053901D 202@^ Double Auto Reverse Cassette Deck 2 TASCAM 202MKV á á á è í ì ì ó í í è ì ó í á TASCAM 202MKV 3 @V @V 4 TASCAM 202MKV TASCAM 202MKV 5 6 TASCAM 202MKV 1 2 3 4 5 6 7 8 9 0 q w e r ø t º

More information

1.0, λ. Holt-Winters t + h,ỹ t ỹ t+h t = ỹ t + hf t.,,.,,,., Hassan [5],,,.,,,,,,Hassan EM,, [6] [8].,,,,Stenger [9]. Baum-Welch, Baum-Welch (Incremen

1.0, λ. Holt-Winters t + h,ỹ t ỹ t+h t = ỹ t + hf t.,,.,,,., Hassan [5],,,.,,,,,,Hassan EM,, [6] [8].,,,,Stenger [9]. Baum-Welch, Baum-Welch (Incremen DEIM Forum 2009 E8-4 HMM 184 8584 3-7-2 E-mail: kei.wakabayashi.bq@gs-eng.hosei.ac.jp, miurat@k.hosei.ac.jp, (HMM)., EM HMM, Baum-Welch,,,, Forecasting Time-Series on Data Stream using Incremental Hidden

More information

技術研究所 研究所報 No.80

技術研究所 研究所報 No.80 Calculating Temperatures in Concrete Elements Exposed to Fire by Hideto Saito and Takeshi Morita Abstract Six concrete-filled steel tube column specimens without fire protection measures were subjected

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

3~ 庶務日誌 H H - 一 1O ~11 理事会のうごき... H H H.12~14 追悼記事 H H..... H H..... H 16~17 逝去会員 H H ~19 術... H ~21 母校だより... H..... H..22~27 支部の

3~ 庶務日誌 H H - 一 1O ~11 理事会のうごき... H H H.12~14 追悼記事 H H..... H H..... H 16~17 逝去会員 H H ~19 術... H ~21 母校だより... H..... H..22~27 支部の ~ 3~ 庶務日誌 H H - 一 1O ~11 理事会のうごき... H H H.12~14 追悼記事 H H..... H - -... H..... H 16~17 逝去会員 H H.. - 18~19 術... H - - - 20~21 母校だより... H..... H..22~27 支部のうごき... H..... H.. 29~31 クラス会だより... H.. 3 2~34 すいどうばし...

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self- TC1-31st Fuzzy System Symposium (Chofu, September -, 15) Proposing a Growing Self-Organizing Map Based on a Learning Theory of a Gaussian Mixture Model Kazuhiro Tounaga National Fisheries University Abstract:

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

Ł\”ƒ.dvi

Ł\”ƒ.dvi , , 1 1 9 11 9 12 10 13 11 14 14 15 15 16 19 2 21 21 21 22 23 221 23 222 24 223 27 23 30 231 2PLM 31 232 CCM 31 233 2PLCM 33 234 34 235 35 3 51 31 51 32 53 321 53 322 54 323 2 BTM 54 2 324 55 325 MCMC

More information

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi Tite 素数巾導手実アーベル体の岩澤不変量 (Agebraic Number Theory and Reated Topics 2010) Author(s) 小松, 啓一 ; 福田, 隆 ; 森澤, 貴之 Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32: 105-124 Issue Date 2012-07 URL http://hd.hande.net/2433/196246

More information

(2) 品詞はいつも語形コードの中で最初のフィールドで示される ルドがコードセット内の配置のために許されるかを決定する それは 以降のどのフィー. 形容詞...J. 名詞...N. 定冠詞...D. 代名詞...R. 動詞...V. 接続詞...C. 助動詞...B. 間投詞...I. 前置詞...

(2) 品詞はいつも語形コードの中で最初のフィールドで示される ルドがコードセット内の配置のために許されるかを決定する それは 以降のどのフィー. 形容詞...J. 名詞...N. 定冠詞...D. 代名詞...R. 動詞...V. 接続詞...C. 助動詞...B. 間投詞...I. 前置詞... (1) ロゴスバイブルソフトウェア ギリシャ語語形コードの解説 (LOGOS 社による ) 作業中 村上定幸 インタリニアのギリシャ語の上にカーソルを置くと 品詞が表示されます この code ですが 解説がマニュ アルにはみられません ( 添付されている日本語のファイ ル help から見ることができる英文の解説にも ) そこ で 初めて見る者には ギリシャ語原形の下におる 何 ケタかのアルファベットの表記を分かりにくいものに

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

[FX11]シリーズカタログ

[FX11]シリーズカタログ May.1.218 Copyright 218 HIROSE ELECTRIC CO., LTD. All Rights Reserved. ICR (db) 6 5 4 3 2 ICR 3mm(Without GND) 1 ICR IEEEspec 1 2 3 4 5 6 7 8 9 1 Frequency (GHz) Z (Ohm) 12 115 11 15 1 95 9 Impedance 3mm(Without

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

p. 201 ε áν ε ν áν ε Ind. Präs., Ind. Perf. Ind. Imperfekt ε ε ν 6 p Der sprechende deutet an, welches Verhältnis des bedingenden Satzes zur

p. 201 ε áν ε ν áν ε Ind. Präs., Ind. Perf. Ind. Imperfekt ε ε ν 6 p Der sprechende deutet an, welches Verhältnis des bedingenden Satzes zur P.93 conditional sentences, Konditionalsätze ε 10 11 12 3 p. 201 ε áν ε ν áν ε Ind. Präs., Ind. Perf. Ind. Imperfekt ε ε ν 6 p. 150-155 Der sprechende deutet an, welches Verhältnis des bedingenden Satzes

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

(1) (2)

(1) (2) 3 3.1 3.1.1 3.1.2 (1) (2) 3.1.3 3-3.1.3.1 3.1.3.1 1 2 3.1.4 3.23.4 NATM 1980-3.1.4.1-3.1.4.2 NATM 20 1) NATM No.1235, 1983. 2) No.A-84-511984. -3.1.4.1 NATM -3.1.4.2 NATM Vp Vp 23/2882% 1983 : 0 A i X

More information

- 楽匠 52 モーターシリース :' ( p10 ~ 1 1) - 楽匠 S らくらくモーションシリース :.( p10~1 1) ~ レベツ えたスペースが必要です 壁にはぴったりとつけず 7~8cm 以上

- 楽匠 52 モーターシリース :' ( p10 ~ 1 1) - 楽匠 S らくらくモーションシリース :.( p10~1 1) ~ レベツ えたスペースが必要です 壁にはぴったりとつけず 7~8cm 以上 h~ - 楽匠 52 モーターシリース :' ( p10 ~ 1 1) - 楽匠 S らくらくモーションシリース :.( p10~1 1) ~ レベツ えたスペースが必要です 壁にはぴったりとつけず 7~8cm 以上 ;~ ヨ - 哩 :t.~ コー メーカー :I'~ ラマウントベッド. メーカー I ~ ラマウントベッド メーカー : / ~ ラマウントベッド S~IJ- 蒜 F 一一一三二

More information