082_rev2_utf8.pdf

Size: px
Start display at page:

Download "082_rev2_utf8.pdf"

Transcription

1 , 1

2 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997) de Jong and Nijman (1997) Parzen (1963) Cohen et al. (1983) Robinson (1985) Lo and Mackinlay (1990a b) Conley et al. (1995) Ghysels et al. (1995)

3 ( 1a-1c, 1a-1c, 2a-2c)

4 3 3 1a-1c 2a-2c ( 3a-3c) 3 6 3a-3c ( 2a-2c, 4a-4c, 5a-5c) 2a-2c 4a-4c a-5c

5 ( 6a-6c) 6a-6c de Jong and Nijman (1997) de Jong and Nijman (1997) 2 2 p t q t p t i q t j p t 2 p ti+1 p ti = t i+1 t=t i +1 Δp t (1) 5

6 Δp t = p t p t 1 (1) t i i 2 y ij (p ti+1 p ti )(q tj+1 q tj )= t i+1 t=t i +1 t j+1 Δp t s=t j +1 Δq s (2) (deterministic) 2 E[y ij ]=E[ t i+1 t=t i +1 t j+1 Δp t t=t j +1 Δq s ]= t i+1 t j+1 t=t i +1 s=t j +1 γ t s (3) γ k = Cov[Δp t, Δq t k ]=E[Δp t Δq t k ] Δq t k = q t k q t k 1 3 γ k x ij (k) x ij (k) =max(0,min(t i+1,t j+1 + k) max(t i,t j + k)) (4) x ij (k) x ij (k) y ij E[y ij x ij ]= K k= K x ij (k)γ k (5) K -K 5 2K+1 γ k γ x ij (2K+1 x ij (k) y ij x ijγ + e ij (6) γ y ij x ij 2 y ij 1 γ γ k = γ k x ij Δp t Δq t γ k γ k ρ k = ( γ p (7) 0 γq 0) 1/2 γ p 0 γ q 0 Δp t Δq t γ p 0 γ q 0 t 3.1 6

7 7a-7c 3 K) 5 10 K=6,1 K=15,de Jong and Nijman (1997) S & P 500 K 5 10 K=8,10, 1 K=20,25 ( 7a) k= k=1 5 de Jong and Nijman (1997) S & P 500 k=1 bid-ask bounce) k= ( 7b) k=1 1 k= t k=14 t 10 ( 7c) 7

8 k= k= k= a-8c 3 K) 5 10 K=6,1 K= K=8,10, 1 K=20,25 ρ k = Cov[Δp t, Δq t k ]/(γ0γ p 0) q 1/2 p q k k k k 8b 8c 2 2 ( 8a) 5 k= k=0 t 10 k= t k=

9 5 10 k k= k=0 10% ( 8b) 5 k= 1 0 k= 1 t t k=0 10 k=, 1 0, 6 k= k= k= k= ( 8c) 5 k= 4, 1,0,1 t k= 0 10 k= 4,0,1 k=0 k=1 10 k= k=1 5 1 k= 9, 8, 2, 8 k= 9, 2 k= 8,

10 k=0 1 k= 2 5 k= 1 1 k= 9 1 k= 8 1 k=8 5 k=1 1 k= (2008), ρ k = γ k ρ (γ p k = γ k 0 γq 0 )1/2 ( γ 0 γq p 0 )1/2 γ 0, p γ q 0 γ k γ k γ k γ p 0 γ p 0 White (1980) γ q 0 γ q 0 y ij x ij (k) y X 6 y = Xγ + e (8) 2 1 y p ij (p ti+1 p ti )(p tj+1 p tj ) (9) 10

11 y q ij (q ti+1 q ti )(q tj+1 q tj ) (10) y p ij y q ij 8 y p = X p γ p + e p (11) y q = X q γ q + e q (12) y p X p y p ij y p ij x p ij(k) y q X q y q ij y q ij x q ij(k) ( γ γ) AV [( γ γ)] = (X X) 1 X E[ee ]X(X X) 1 (13) AV [ ] ( γ p γ p ) ( γ q γ q ) AV [( γ p γ p )] = (X p X p ) 1 X p E[e p e p ]X p (X p X p ) 1 (14) AV [( γ q γ q )] = (X q X q ) 1 X q E[e q e q ]X q (X q X q ) 1 (15) ( γ γ) ( γ p γ p ) ACOV [( γ γ), ( γ p γ p )] = (X X) 1 X E[ee p ]X p (X p X p ) 1, (16) ( γ γ) ( γ q γ q ) ACOV [( γ γ), ( γ q γ q )] = (X X) 1 X E[ee q ]X q (X q X q ) 1, (17) ( γ p γ p ) ( γ q γ q ) ACOV [( γ p γ p ), ( γ q γ q )] =(X p X p ) 1 X p E[e p e q ]X q (X q X q ) 1, (18) 16 γ γ γ p γ p ( γ γ) ( γ p γ p ) γ k γ k γ p 0 γ p Ω γ q 0 γ q 0 ( ρ k ρ k ) delta method ( Hayashi (2000) ) ρ k γ k,γ0,γ p q 0 ρ k f(γ k,γ0,γ p 0) q ρ k γ k,γ0,γ p q 0 11

12 F (γ k,γ0,γ p 0) q ( F (γ k,γ0,γ p 0) q ρk, ρ k γ k γ p, ρ ) k 0 γ q 0 ( ) 1 = (γ0γ p 0) q, 1 γ k 1/2 2 (γ0) p 3/2 (γ0) q, 1 γ k 1/2 2 (γ0) p 1/2 (γ0) q 3/2 (19) ( ρ k ρ k ) AV [( ρ k ρ k )] = F (γ k,γ0,γ p 0)ΩF q (γ k,γ0,γ p 0) q (20) ( ρ k ρ k ) ÂV [( ρ k ρ k )] = F ( γ k, γ 0, p γ 0) q ΩF ( γ k, γ 0, p γ 0) q (21) ρ k , Cohen, K., Hawawimi, G., Maier, S., Schwartz, R., Whitcomb, D., Friction in the trading process and the estimation of systematic risk. Joumal of Financial Economics 12, Conley, T., Hansen, L.P., Luttmer, E., Scheinkman, J., Short term interest rates as subordinated diffusions. Unpublished working paper. de Jong, F., Nijman, T., High frequency analysis of lead-lag relationships between financial markets, Journal of Empirical Finance 4, Ghysels, E., Gourieroux. C., Jasiak, J., Market time and asset price movements: Theory and estimation. Discussion paper CIRANO and CREST. Hayashi, F., Econometrics, Princeton University Press, Princeton. 12

13 Lo, A., MacKinlay, A.C., 1990a. An econometric analysis of infrequent trading. Journal of Econometrics 45, Lo, A., MacKinlay, A.C., 1990b. When are contrarian profits due to stock market overreaction?. Review of Financial Studies 3, Parzen, E., On spectral analysis with missing observations and amplitude modulation. Shankya, series A 25, Robinson, P.M., Testing for serial correlation in regression with missing observations. Joumal of the Royal Statistical Society B 47, White, H., 1980, A hetoroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica 48, a

14 1b c

15 2a :00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15: No. 1 No. 2 No. 3 (a) :00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15: No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 (b)

16 2b :00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15: No. 1 No. 2 No. 3 (a) :00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15: No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 (b)

17 2c :00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15: No. 1 No. 2 No. 3 (a) :00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15: No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 (b)

18 1a b c

19 2a :% No No No No No No b :% No No No No No No c :% No No No No No No

20 3a (h:m:s) No. 1 9 : : : : No. 2 9 : : : : No. 3 9 : : : : No. 4 9 : : : : No. 5 9 : : : : No. 6 9 : : : : b (h:m:s) No. 1 9 : : : : No. 2 9 : : : : No. 3 9 : : : : No. 4 9 : : : : No. 5 9 : : : : No. 6 9 : : : : c (h:m:s) No. 1 9 : : : : No. 2 9 : : : : No. 3 9 : : : : No. 4 9 : : : : No. 5 9 : : : : No. 6 9 : : : :

21 4a 30 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No b 30 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No c 30 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No

22 5a 30 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No b 30 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No c 30 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No

23 6a 30 x1,000 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No :00-9: b 30 x1,000 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No :00-9: c 30 x1,000 9:00 9:30 10:00 10:30 12:30 13:00 13:30 14:00 14:30 15:00 No No No No No No :00-9:

24 7a Lag 10 min 5 min 1min ( 2.724) ( 9.200) (17.871) (-1.051) ( 1.134) (-7.081) (-0.337) (-1.397) ( 1.077) (-1.825) ( 1.328) ( 1.264) (-0.356) (-0.584) ( 0.871) ( 0.221) (-0.753) (-1.301) ( 0.936) ( 0.590) (-0.276) ( 1.408) (-1.844) (-0.095) ( 1.853) (-1.128) (-0.343) (-0.303) ( 1.000) (-0.799) heteroskedasticity and autocorrelation consistent 24

25 7b Lag 10 min 5 min 1min ( 7.274) ( 7.801) (20.705) (-0.893) (-3.662) (-8.358) (-0.682) (-0.816) ( 2.724) (-0.491) ( 1.334) (-3.147) ( 0.384) (-1.200) (-0.475) ( 0.248) (-0.230) (-1.401) ( 0.313) ( 1.487) (-0.349) (-0.082) (-1.230) (-0.258) ( 1.070) (-0.106) (-0.765) (-0.774) ( 1.936) ( 0.217) heteroskedasticity and autocorrelation consistent 25

26 7c Lag 10 min 5 min 1min ( 9.911) ( 9.731) (18.457) ( 1.664) ( 1.994) (-2.467) (-0.533) ( 1.150) (-2.483) (-0.509) (-0.606) (-0.417) (-0.087) ( 0.110) ( 0.487) ( 0.063) (-0.505) ( 1.009) (-0.154) ( 0.047) (-0.598) (-0.989) (-1.053) (-2.193) ( 0.090) ( 0.052) ( 1.513) (-0.713) (-0.490) ( 0.430) heteroskedasticity and autocorrelation consistent 26

27 8a Lag 10 min 5 min 1min ( 0.216) (-0.353) (-0.721) ( 1.160) (-1.038) ( 0.886) ( 1.201) ( 1.019) (-0.292) ( 1.001) (-0.913) ( 2.654) ( 0.175) ( 0.146) ( 2.898) (-0.246) ( 1.082) ( 2.297) (-1.453) ( 0.715) ( 0.900) ( 1.546) (-0.168) ( 5.293) (-0.517) ( 6.839) ( 0.255) ( 4.317) ( 7.770) ( 0.945) ( 2.192) ( 4.939) (-0.876) (-0.893) ( 1.761) (-0.417) (-0.039) (-0.541) (-0.306) (-0.642) (-0.982) (-1.383) (-0.865) ( 0.696) (-1.661) ( 0.446) ( 1.107) ( 0.998) ( 0.422) (-1.733) (-1.044) ( 0.985) ( 1.951) (-1.652) ( 1.878) (-1.905) ( 0.310) heteroskedasticity and autocorrelation consistent 27

28 8b Lag 10 min 5 min 1min (-1.535) (-0.047) ( 1.268) ( 0.330) ( 1.482) (-0.032) (-1.589) ( 0.267) (-0.742) ( 0.771) ( 0.421) (-1.411) ( 0.055) (-1.680) (-0.144) ( 0.151) ( 1.592) (-3.614) (-1.972) ( 1.046) ( 0.558) (-0.309) (-1.539) (-3.211) ( 2.850) (-2.205) (-0.907) (-4.074) (-8.007) (-3.641) ( 1.044) (-0.502) ( 2.009) (-1.540) (-0.126) (-0.635) ( 1.045) (-0.886) (-1.503) ( 0.276) (-0.446) ( 1.259) (-0.648) (-0.053) (-1.678) ( 2.139) ( 0.597) ( 0.922) ( 0.254) ( 1.706) (-1.224) ( 0.402) ( 1.192) (-0.946) (-0.940) ( 0.911) (-1.012) heteroskedasticity and autocorrelation consistent 28

29 8c Lag 10 min 5 min 1min ( 0.591) ( 0.975) ( 0.084) (-1.057) ( 0.914) ( 0.434) (-2.175) ( 2.696) (-0.977) (-0.250) ( 1.527) ( 0.172) ( 0.399) ( 1.196) (-0.417) (-2.035) (-1.974) (-0.019) ( 0.880) ( 1.379) (-0.377) (-0.286) (-1.699) (-2.630) (-0.628) (-4.590) ( 0.665) (-3.569) (-6.523) (-0.468) ( 4.397) (-4.084) (-0.222) ( 1.005) ( 0.509) ( 0.214) ( 0.623) (-0.632) ( 1.667) (-0.259) ( 1.392) ( 1.013) (-1.004) ( 0.327) ( 1.487) ( 0.800) ( 1.404) ( 1.509) (-0.039) ( 2.935) ( 0.728) (-0.527) (-0.474) (-1.252) ( 1.203) ( 1.832) (-1.059) heteroskedasticity and autocorrelation consistent 29

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A) Discussion Paper Series A No.425 2002 2 186-8603 [email protected] 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................

More information

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6]) Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:

More information

IMES Discussion Paper Series 98-J

IMES Discussion Paper Series 98-J IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES Discussion Paper Series 98-J-1 1998 1 E-mail: [email protected] 1. 1.1.

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson

More information

BB 報告書完成版_修正版)040415.doc

BB 報告書完成版_修正版)040415.doc 3 4 5 8 KW Q = AK α W β q = a + α k + βw q = log Q, k = log K, w = logw i P ij v ij P ij = exp( vij ), J exp( v ) k= 1 ik v i j = X β αp + γnu j j j j X j j p j j NU j j NU j (

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

GDPギャップと潜在成長率

GDPギャップと潜在成長率 2003 output gap 80 1 20 90 20 70 2 1 2 output gap potential output 1 2 (2001) 3 potential rate of growth 2000 Meyer (2000) European Central Bank: (1999b) 2002 10 4 3 (2000) 4 4 () 5 5 5 6 () () 7 Total

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証 GARCH GARCH GJREGARCH Duan Duan t GARCHGJREGARCH GARCH GJR EGARCHGARCHGJRt E-mail: [email protected] Black and ScholesBS Engle ARCHautoregressive conditional heteroskedasticity BollerslevGARCHgeneralized

More information

競売不動産からみた首都圏地価の動向

競売不動産からみた首都圏地価の動向 E-mail : [email protected] http://bit.sikkou.jp STYLE m m LancasterRosen Suzaki and Ohta Nagai, Kondo and Ohta i P i n lnp i = + jln X ij + k D ik + TD i + i. m j =1 k =1 X ij j D ik k TD i

More information

M&A の経済分析:M&A はなぜ増加したのか

M&A の経済分析:M&A はなぜ増加したのか RIETI Discussion Paper Series 06-J-034 RIETI Discussion Paper Series 06-J-034 M&A の経済分析 :M&A はなぜ増加したのか 蟻川靖浩 宮島英昭 ( 早稲田大学 RIETI) 2006 年 4 月 要旨 1990 年代以降の M&A の急増の主要な要因は 産業や企業の成長性や収益性へのショックである とりわけ M&A を活発に行っている産業あるいは企業の特性としては

More information

高齢化とマクロ投資比率―国際パネルデータを用いた分析―

高齢化とマクロ投資比率―国際パネルデータを用いた分析― 196 2017 * ** ** ** ** 160 2 2 JEL Classification Codes E21, E22, J11 Keywords * ESRI 28 ESRI 29 3 17 ESRI ** 115 196 Population Aging and Domestic Investment An Analysis Using International Panel Data

More information

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec 早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Economic Affairs Waseda University 169-8050 Tokyo,Japan

More information

株式保有構成と企業価値 ─コーポレート・ガバナンスに関する一考察─

株式保有構成と企業価値 ─コーポレート・ガバナンスに関する一考察─ q E-mail: [email protected] E-mail: [email protected] OECD Vives Tirole Shleifer and Vishny q %% %% % % Allen and Gale %% % Admati, Pfreiderer and Zechner Burkart, Gromb and Panunzi Cremer 1995Pagno

More information

デフレの定義(最新版).PDF

デフレの定義(最新版).PDF DP/01-1 Director General for Economic Assessment and Policy Analysis CABINET OFFICE E-mail : [email protected] 1 2 3 i (ii) 4 5 Deflation defined as at least two consecutive years of price decreases.

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

時間割引:双曲割引と弱加法性

時間割引:双曲割引と弱加法性 Discussion aper No. 666 June 2006 The Institute of Social and Economic Research Osaka University 6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan Time Discounting: Declining Impatience and Interval Effect

More information

untitled

untitled 2007 2 * (i) (ii) 2006 7 1999 2 2000 8 1 (2003) Oda and Ueda (2005) 2005 Kimura and Small(2006) Iwamura, Shiratsuka and Watanabe (2006) (2006) 3 (i) (ii) (iii) 2 2 3 4 2.1 (2003) (2005) 1) (i) (ii) (i)

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

2 [email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

本文/YAZ092F

本文/YAZ092F pd qpdq pdqd pdq ytt f s e is s scovytyts fc d d L d ytt d LLytyt twn ytl d t L d jd jjd L j x z x e z dz pd q LL d ytltt twn z zd ytpdq f e i d e i e i f d pdq pdq d LL d ytlt fracdiff tt d d d pdq pdq

More information

Journal of Economic Behavior & Organization Quarterly Journal of Economics Review of Economics and Statistics Internal Labor Markets and Manpower Analysis Economics of Education Review Journal of Political

More information

IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 203 IMES Discuss ssion Paper Series 98-J-2 1998 1 VaRVWAP E-mail: [email protected]

More information

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト― E-mail: [email protected] E-mail: [email protected] Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al LTCMLong Term Capital Management Fed G G T

More information

産業・企業レベルデータで見た日本の経済成長.pdf

産業・企業レベルデータで見た日本の経済成長.pdf 2003 11 10 IT IT JIP JCER ) 2003 CD-ROM http://www.esri.go.jp/jp/archive/bun/bun170/170index. html 1 JIP Jorgenson, Mun, andstiroh (2002) GDP 2 3 1951 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981

More information

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i 1 Idiosyncratic,, Idiosyncratic (I- ) I- 1 I- I- Jensen I- Fama-French 3 I- Fama-French 3 1 Fama-French (FF) 3 [6] (Capital Asset Pricing Model; CAPM [12, 15]) CAPM ( [2, 10, 14, 16]) [18] Idiosyncratic

More information

<4D F736F F D2095BD90AC E937890B68A888F4B8AB E397C394EF82CC93AE8CFC82C98AD682B782E992B28DB895AA90CD2E646F6378>

<4D F736F F D2095BD90AC E937890B68A888F4B8AB E397C394EF82CC93AE8CFC82C98AD682B782E992B28DB895AA90CD2E646F6378> 29 5 IT 1,234 1,447 2,130 1,200 3,043 2 9,275 2,818 ICD-10 p.2 27 3 7,848 1,234 10 4,291 11.3% 10 33.3% 32.4%12.9% 32.2%26.9%18.5% 1,095 874 339 490 189 178 6,358 5,279 3,380 2,345 1,994 1,693 37.6 34.9

More information

2001 2001 1999 2001 2.1 2001 2002 124

2001 2001 1999 2001 2.1 2001 2002 124 123 133 2002 The Influence of Investing Securities and Retirement Allowance on Stock Market Valuation Yasuo HOSHINO, Institute of Policy and Planning Sciences, University of Tsukuba Kenji HAYASHI, Graduate

More information

取扱説明書 [F-06C]

取扱説明書 [F-06C] 23 24 25 26 2 1 27 3 e e 5 4 e e 6 28 7 1 2 3 e 4 5 29 6 8 7 30 1 2 3 e 4 5 31 1 1 ee e ee e aee b e 2 e eee ee 32 2 3 4 1 ee ee 33 1 2 3 4 34 5 7 8 e 6 35 9 11 10 1 2 3 e 4 36 1 b a c 37 3 e 1 e ee 2

More information

日本統計学会誌, 第45巻, 第2号, 329頁-352頁

日本統計学会誌, 第45巻, 第2号, 329頁-352頁 45, 2, 2016 3 329 352 Market Risk Aggregation Using Copula and Its Application to Financial Practice Toshinao Yoshiba 2009 We investigate how a copula between risk factors takes portfolio diversification

More information

[2], [3] Bremer [3] Fortune % Overreaction hypothesis Benou [2] 1 20% [9] 1 [10] 1 [1], [4], [5], [6], [7], [8] [1] [8] [6] [2], [3] stylized f

[2], [3] Bremer [3] Fortune % Overreaction hypothesis Benou [2] 1 20% [9] 1 [10] 1 [1], [4], [5], [6], [7], [8] [1] [8] [6] [2], [3] stylized f 1,a) 2,3 3,4 2012 1 26, 2012 7 2 1 An Analysis on the Reversal Mechanism for Large Stock Price Declines Using Artificial Markets Isao Yagi 1,a) Takanobu Mizuta 2,3 Kiyoshi Izumi 3,4 Received: January 26,

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: [email protected], E-mail: [email protected] 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

橡motonishi.PDF

橡motonishi.PDF 2000 3 ITME Discussion Paper No.26 850-8506 4-2-1 [email protected] 1 1 MRF 1 (2000) 2 MRF 2 Schreft (1997) 3 2 Tobin (1985) Friedman (1992) 3 3 4 5 3 4 5 2 White (1984) 1 4 (1996) (1999) (1999)

More information

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証- 日 本 版 General Social Surveys 研 究 論 文 集 [6] JGSS で 見 た 日 本 人 の 意 識 と 行 動 JGSS Research Series No.3 JGSS Women s Higher Education and Marriage Timing in an era of employment uncertainty Yuko NOZAKI Graduate

More information