Size: px
Start display at page:

Download "2"

Transcription

1

2 Cookbook-style

3 . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2

4 3 (multicolinearity) K+=N R 2 y X cos 2 θ = + = + = N NK K K K N N K e e e y y y e e X y ),..., (, β β β β β

5 (asymptotic) (conditional homoskedasticity) (eogeneity) F χ 2 Estimator (consistency) OLS E( i e i ) = 0 (orthogonality/predeterminedness condition) estimator consistent GLS White estimator 4

6 (endogeneity) (serial correlation) (instrumental variables) orthogonality condition GMM AR Durbin-Watson invalid Cochrane-Orcutt (common factor ) 5

7 GMM Instrumental Variables + White estimator GMM orthogonality condition (over-identified) LS White estimator weight matri OLS GMM Just-identified OLS OLS GMM 6

8 (Statistical Significance) P(h(θ) X) P(X h(θ)) 5 h(θ) h(θ ) 95 significance level specification search (regression fishing) = correctly specified model 5 test Probability confidence Bayesian? (frequentist) confidence Bayesian diffuse prior 7

9 Significance power Fisher p-value power Neyman Pearson decision-theoretic approach power 00 θ = θ significance level Likelihood ratio significance level test ( likelihood ratio ) Neyman Pearson likelihood ratio test 8

10 P(X θ = 0) = 5% test 5% 95%. test Fisher objective epistemic Neyman-Pearson objective behavioral Bayesian inter-subjective epistemic behavioral 9

11 R 2 AIC R 2 Theil R 2 R 2 R 2 s 2 log(s 2 ) 2 2 N 2 K + log( s ) = log( σˆ ) log( σˆ ) + N K N Kullback-Leibler AIC log( σˆ K ) + 2 N 2 + inconsistent overfit AIC Scwartz consistent 2 K + log( σˆ ) + log( N ) N 0

12 Estimation R 2 R 2 nested models out-of-sample performance cross validation science art specification search

13 Hypothesis testing estimation Mehra Prescott equity premium puzzle significance estimates Calibration (simulation) Real business cycle Kydland Prescott hypothesis testing calibration non-parametric estimation bootstrap Conditional epectation significance digression estimates 2

14 Appendi. Econometrics Tetbooks. Introductory Amemiya (994): Written for theory-oriented beginners. Goldberger (998): Introductory version of Goldberger (99). (999): A Japanese tetbook comparable to Pindyck and Rubinfeld (997). Pindyck and Rubinfeld (997): Application-oriented. Targeted at advanced MBAs. 2. Basic (Used in introductory Ph.D. econometrics courses) Goldberger (99): Unconventional and stimulating in many respects. Greene (999): Benchmark? Comprehensive and widely used among applied researchers. Hansen (200): Lecture notes used at Wisconsin. Concisely and rigorously written. Poirier (995): Written from a Bayesian point of view. 3. Advanced Davidson and MacKinnon (993): Widely used in theory-oriented Ph.D. courses. Hamilton (994): The tet of time-series analysis. Hayashi (2000): Net generation s orthodoy unified under GMM. 3

15 Amemiya, T Introduction to Statistics and Econometrics. Cambridge, MA: Harvard University Press Davidson, R., and J. G. MacKinnon Estimation and Inference in Econometrics. Oford, U.K.: Oford University Press. Goldberger, A. S. 99. A Course in Econometrics. Cambridge, MA: Harvard University Press. Goldberger, A. S Introductory Econometrics. Cambridge, MA: Harvard University Press. Greene, W. H Econometric Analysis. Upper Saddle River, NJ: Prentice Hall. Hamilton, J. D Time Series Analysis. Princeton, NJ: Princeton University Press. Hansen, B. E Lecture Notes for Economic Statistics and Econometrics II ( University of Wisconsin, Madison, WI. Hayashi, F Econometrics. Princeton, NJ: Princeton University Press. 999 Pindyck, R. S., and D. L. Rubinfeld Econometric Models and Economic Forecasts. New York, NY: McGraw Hill. Poirier, D. J Intermediate Statistics and Econometrics: A Comparative Approach. Cambridge, MA: MIT Press. 4

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

50-4 平井健之.pwd

50-4 平井健之.pwd GDP GNP Gupta 1967, Wagner and Weber 1977, Mann 1980, Abizadeh and Gray 1985, Ram 1987, Abizadeh and Yousefi 1988, Nagarajan and Spears 1990 GDP GNP GDP GNP GDP GNP Adolph Wagner Wagner 1967 Ram 1987,

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応 VaR VaR VaR VaR GARCH E-mail : [email protected] VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR VaR VaR VaR VaR VaR VaR

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian 2004 1 1 1.1 Maddala(1993) Mátyás and Sevestre (1996) Hsiao(2003) Baltagi(2001) Lee(2002) Woolridge(2002a), Arellano(2003) Journal of Econometrics Econometrica Greene(2000) Maddala(2001) Johnston and Di-

More information

橡同居選択における所得の影響(DP原稿).PDF

橡同居選択における所得の影響(DP原稿).PDF ** *** * 2000 13 ** *** (1) (2) (1986) - 1 - - 2 - (1986) Ohtake (1991) (1993) (1994) (1996) (1997) (1997) Hayashi (1997) (1999) 60 Ohtake (1991) 86 (1996) 89 (1997) 92 (1999) 95 (1993) 86 89 74 79 (1986)

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

商業学会発表資料( ).ppt

商業学会発表資料( ).ppt 11 20121117 [email protected] BB1 B2 B1B2 Lehtinen, U. and J. R. Laitamaki(1989),, Applications of Service Quality and Services Marketing in Health Care Organizations, D. T. Paul (ed.),

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 [email protected] 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

(X) (Y ) Y = intercept + c X + e (1) e c c M = intercept + ax + e (2) a Y = intercept + cx + bm + e (3) (1) X c c c (3) b X M Y (indirect effect) a b

(X) (Y ) Y = intercept + c X + e (1) e c c M = intercept + ax + e (2) a Y = intercept + cx + bm + e (3) (1) X c c c (3) b X M Y (indirect effect) a b 21 12 23 (mediation analysis) Figure 1 X Y M (mediator) mediation model Baron and Kenny (1986) 1 1) mediated moderation ( moderated mediation) 2) (multilevel mediation model) a M b X c (c ) Y 1: 1 1.1

More information

Attendance Demand for J-League õ Shinsuke KAWAI* and Takeo HIRATA* Abstract The purpose of this study was to clarify the variables determining the attendance in J-league matches, using the 2,699 J-league

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

競売不動産からみた首都圏地価の動向

競売不動産からみた首都圏地価の動向 E-mail : [email protected] http://bit.sikkou.jp STYLE m m LancasterRosen Suzaki and Ohta Nagai, Kondo and Ohta i P i n lnp i = + jln X ij + k D ik + TD i + i. m j =1 k =1 X ij j D ik k TD i

More information

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A) Discussion Paper Series A No.425 2002 2 186-8603 [email protected] 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

dvi

dvi 2017 65 2 217 234 2017 Covariate Balancing Propensity Score 1 2 2017 1 15 4 30 8 28 Covariate Balancing Propensity Score CBPS, Imai and Ratkovic, 2014 1 0 1 2 Covariate Balancing Propensity Score CBPS

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

J-LEAGUE 8000 V.Kawasaki Urawa.R 5000 J-LEAGUE

J-LEAGUE 8000 V.Kawasaki Urawa.R 5000 J-LEAGUE The Demand for J-League with Fixed Effect Tobit Model: Effects toward Community Formation Tomonori Ito and Yoichiro Higuchi The J-League was established in 993 expecting to encourage the community to form

More information

Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): Issue Date URL Right

Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): Issue Date URL   Right Title ベンチャー企業の研究開発支出の決定要因 日本と台湾の事例を中心に Author(s) 蘇, 顯揚 Citation 經濟論叢 (1996), 158(1): 54-76 Issue Date 1996-07 URL https://doi.org/10.14989/45083 Right Type Departmental Bulletin Paper Textversion publisher

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1

9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1 9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1 2 2 y i = 1, 2, 3,...J (1 < 2 < 3

More information

Rによる計量分析:データ解析と可視化 - 第2回 セットアップ

Rによる計量分析:データ解析と可視化 - 第2回 セットアップ R 2 2017 Email: [email protected] October 16, 2017 Outline 1 ( ) 2 R RStudio 3 4 R (Toyama/NIHU) R October 16, 2017 1 / 34 R RStudio, R PC ( ) ( ) (Toyama/NIHU) R October 16, 2017 2 / 34 R ( ) R

More information

BB 報告書完成版_修正版)040415.doc

BB 報告書完成版_修正版)040415.doc 3 4 5 8 KW Q = AK α W β q = a + α k + βw q = log Q, k = log K, w = logw i P ij v ij P ij = exp( vij ), J exp( v ) k= 1 ik v i j = X β αp + γnu j j j j X j j p j j NU j j NU j (

More information

自由集会時系列part2web.key

自由集会時系列part2web.key spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

Masahiro NAKANO Keynes benchmark Keynes 89

Masahiro NAKANO Keynes benchmark Keynes 89 89 102 Masahiro NAKANO Keynes benchmark Keynes 89 ( )IS LM Keynes Hicks IS LM Phillips stylized fact ( ) ( ) 90 Keynes 3 superneutrality 4 RBC 2 1 (i) (ii) (a) (b) (c) 3 Keynes 91 Walras Keynes Say s law

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

( ) ( ) Modified on 2009/05/24, 2008/09/17, 15, 12, 11, 10, 09 Created on 2008/07/02 1 1) ( ) ( ) (exgen Excel VBA ) 2)3) 1.1 ( ) ( ) : : (1) ( ) ( )

( ) ( ) Modified on 2009/05/24, 2008/09/17, 15, 12, 11, 10, 09 Created on 2008/07/02 1 1) ( ) ( ) (exgen Excel VBA ) 2)3) 1.1 ( ) ( ) : : (1) ( ) ( ) () ( ) Modified on 2009/05/24, 2008/09/17, 15, 12, 11, 10, 09 Created on 2008/07/02 1 1) () ( ) (exgen Excel VBA ) 2)3) 1.1 ( ) () : : (1) ( ) ( ) (2) / (1) (= ) (2) (= () =) 4)5) () ( ) () (=) (1) : (

More information

2 / 24

2 / 24 2017 11 9 1 / 24 2 / 24 Solow, 1957 total factor productivity; TFP 5% 経済成長率の要因分解 4% 3% 2.68% 2.51% 2% 1% 0% 1.63% 1.50% 0.34% 0.42% 0.55% 0.97% 1.14% 0.86% 0.13% -0.59% -0.59% -0.09% 0.01% -1% 1970-80

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

Microsoft Word - Šv”|“Å‘I.DOC

Microsoft Word - Šv”|“Å‘I.DOC 90 ª ª * [email protected] i ii iii iv SNA 1 70 80 2 80 90 80 80 90 1 80 90 98 6 1 1 SNA 2 1 SNA 80 1SNA 1 19931998 1 2-190 1,2 2 2-2 2-3,4 3 2-5 4 2030 2-3 3 2-15 97 20 90 2-15 9198 1.

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

文部科学省科学研究費補助金特定領域研究B

文部科学省科学研究費補助金特定領域研究B B 1 Micro Data Analysis on the Typical Diseases 2 2001 3 ( ) By Hippocrates,,, pp. 1017-1018. 1. 1 B ( ) Dr. Theodore Hitiris (The University of York) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 Correspondence to: e-mail;

More information

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

(Jackson model) Ziman) (fluidity) (viscosity) (Free v 1) 16 6 10 1) e-mail: [email protected] 0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)(

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information