カルマンフィルターによるベータ推定( )
|
|
|
- ゆゆこ あわたけ
- 7 years ago
- Views:
Transcription
1 β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. [email protected]., 104
2 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the Capital Asset Pricing Model CAPM) CAPM 1 β i Campbell, Lo, and MacKinlay (1996) CAPM TOPIX CAPM Roll Roll (1977) (2003) CAPM β i β i β i 1 TOPIX 1 22 β i β i CAPM CAPM Sharpe (1964) Lintner (1965) CAPM E[R i R f ]=β i (E[R m R f ]) β i = Cov[R i,r m ] Var[R m ] (2) R i i R m R f β i R m R f R i R f CAPM CAPM 1 β i β i Campbell, Lo, and MacKinlay (1996) β i CAPM Roll TOPIX CAPM β i β i Blume (1971, 1975) Clarkson and Thompson (1990) β 1 β i
3 β i smoothness priors Smoothness priors β i β i Kalman (1960) (2) β i β i Kalman (1960) β i β i Zalewska (2004) β Zalewska (2004) AIC (Akaike Information Criterion) 2 i Z i (t) =β i Z m (t)+α i (3) Z i (t) E[R i R f ] Z m (t) E[R m R f ] α i i CAPM β i β i β i β i (t) β i (t) ν i (t) =β i (t) β i (t 1), (4) ν i (t) N(0,τ 2 i ) τ i i smoothness priors (4) Kitagawa and Gersch (1985) smootness priors smoothness priors (3) (4) β i (t) =β i (t 1) + ν i (t) (5) Z i (t) =Z m (t)β i (t)+ɛ i (t) (6) ɛ i (t) ɛ i (t) N(0,σ 2 i ) σ i i (5) (6) β i (t) 2 Kalman (1960) β i (t) β i (t) x(t t j), [j =0, 1, ] β i (t t 1) = β i (t 1 t 1), V (t t 1) = V (t 1 t 1) + τi 2, (7) 2 (1993) Durbin and Koopman (2001) Hamilton (1994) 106
4 K(t) =V (t t 1)Z m (t){z m (t)v (t t 1)Z m (t)+σi 2 } 1, β i (t t) =β i (t t 1) + K(t){Z i (t) Z m (t)β i (t t 1)}, V (t t) ={1 K(t)Z m (t)}v (t t 1), (8) V (t t j) =E[{β i (t) β i (t t j)} 2 ] β(0 0) V (0 0) β i (t) Akaike (1973) AIC (Akaike Information Criterion) AIC AIC(i) = 2l( ˆθ i )+2p (9) l(θ i ) p ˆθ i AIC i {Z i (1),,Z i (T )} f(z i (1),,Z i (T ) θ i )= T f(z i (t) Z i (1),,Z i (t); θ i ), (10) t=1 θ i =(σ i,τ i ) f(z i (t) Z i (1),,Z i (t); θ i ) f(z i (t) Z i (1),,Z i (t); θ i ) 1 [ = 2πv2 (t) exp 1 2v 2 (t) (Z i(t) Z m (t)β i (t t 1)) 2] (11) l(θ i )= 1 2 { T log(2π)+ + T t=1 T log v 2 (t) t=1 1 v 2 (t) (Z i(t) Z m (t)β i (t t 1)) 2}, (12) v 2 (t) =Z m (t)v (t t 1)Z m (t)+σi 2 R optim Nelder-Mead TOPIX TOPIX LIBOR 3 LIBOR Campbell, Lo, and MacKinlay (1996) pp
5 ( ) / /12 TOPIX 1998/ /12 LIBOR / /12 1: R i = log P t P t 1, (13) P t TOPIX (12) R optim β i (t) (5) (6) τ i, σ i, AIC optim 0 4 (Bowman-Shenton (Jarque-Bera) ) Ljung-Box β Quantile-Quantile Quantile-Quantile 2 2 code optim β V (0 0) β CEO β 2 3 β β β 4 NTT IT β IT IT 5 β IT 2000 β IT σ 2 2 β TOPIX 4 nlm
6 Code AIC σ τ NTT SONY KDDI : 109
7 s Time 1: s Time 2: β 3.3 ν i (t) ɛ i (t) 110
8 s Time 3: s Time 4: NTT 1. Quantile-Quantile 2. Bowman-Shenton (Jarque-Bera) 3. Ljung-Box Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box 3 p 4 3 *** 1% ** 5% Ljung-Box
9 s Time 5: Bowman-Shenton β 4 1. β 2. β 3. β β β i Kitagawa (1993, 1996) Gordon (1993) 112
10 Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box (p ) (p ) (p ) (p ) NTT *** *** SONY ** ** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** KDDI *** *** *** *** *** *** *** *** *** *** : 113
11 [1] (1993) FORTRAN 77 [2] (2003) 41 6 [3] Akaike, H., (1973), Information theory and an extension of the maximum likelihood principle, Proc. 2nd International Symposium on Information Theory (B. N. Petrov and F. Csaki eds.) Akademiai Kiado, Budapest, [4] Blume, M.E., (1971), On the Assessment of Risk, Journal of Finance, 24, 1-9. [5] Blume, M. E., (1975), s and their Regression Tendencies, Journal of Finance, 30, [6] Campbell, Lo, and MacKinlay (1996), The Econometrics of the Financial Markets, Princeton Press. [7] Clarkson, P.M. and R. Thompson, (1990), Empirical Estimates of When Investors Face Estimation Risk, Journal of Finance, 45, 2, [8] Durbin, J. and Koopman, S.J., (2001), Time Series Analysis by State Space Methods, Oxford University Press. [9] Gordon, NJ, Salmond, D. J., Smith. A. M., (1993), Novel approach to nonlinear/non-gaussian Bayeaian state estimation, IEEE Proceedings-F, 140 (2), [10] Hamilton, J. D., (1994), Time Series Analysis, Princeton University Press. [11] Kalman, R. E., (1960), A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME-Journal of Basic Engineering, [12] Kitagawa, G., (1993), A Moneta Carlo Filtering and smoothing method for non-gaussian nonlinear state space models, Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time Series Analysis, , Honolulu, Hawaii, January [13] Kitagawa, G., (1996), Monte Carlo filter and smoother for non-gaussian nonlinear state space models, Journal of Computational and Graphical Statistics, Vol.5, No.1, [14] Kitagawa, G. and Gersch, W., (1985), A Smoothness Priors Time Varying AR Coefficient Modeling of Nonstationary Covariance Time Series, IEEE Trans. Automat. Control, Vol AC-30, No.1, pp [15] Lintner, J., (1965), The Valuation of Risk Assets and Selection of Risky Investments in Stock Portfolios and Capital Budgets, Review of Economics and Statistics, 47, [16] Markowitz, H. M., (1952), Portfolio Selection, Journal of Finance, 7, no. 1, [17] Roll, R., (1977), A Critique of the Asset Pricing Theory s Tests: Part I, Journal of Financial Economics, 4, [18] Sharpe, W. F., (1964), Capital Asset Prices: A Theory of Market Equilibrium under Condition of Risk, Journal of Finance, 19, [19] Shiller, R., (1973), A Distributed Lag Estimator Derived from Smoothness Priors, Econometrica, vol. 41, No.4, pp [20] Zalewska, A., (2004), Evolving character of the CAPM beta of the case of the telecom industry, an Indepen working paper. 114
12 urns and Returns s Measurement Equation System Equation : NTT urns and Returns s Measurement Equation System Equation : SONY 115
13 urns and Returns s Measurement Equation System Equation : urns and Returns s Measurement Equation System Equation : 116
14 urns and Returns s Measurement Equation System Equation : urns and Returns s Measurement Equation System Equation : 117
15 urns and Returns s : urns and Returns s : 118
16 urns and Returns s : urns and Returns s : 119
17 urns and Returns s : urns and Returns s : 120
18 urns and Returns s : urns and Returns s : 121
19 urns and Returns s : urns and Returns s : KDDI 122
20 urns and Returns s : urns and Returns s : 123
21 urns and Returns s : urns and Returns s : 124
22 urns and Returns s : urns and Returns s : 125
03.Œk’ì
HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w
autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)
Discussion Paper Series A No.425 2002 2 186-8603 [email protected] 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]
082_rev2_utf8.pdf
3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)
23_02.dvi
Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested
Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-
Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:
2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i
1 Idiosyncratic,, Idiosyncratic (I- ) I- 1 I- I- Jensen I- Fama-French 3 I- Fama-French 3 1 Fama-French (FF) 3 [6] (Capital Asset Pricing Model; CAPM [12, 15]) CAPM ( [2, 10, 14, 16]) [18] Idiosyncratic
わが国企業による資金調達方法の選択問題
* [email protected] ** [email protected] *** [email protected] No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * [email protected] ** [email protected]
Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step
Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura
fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«
2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev
ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応
VaR VaR VaR VaR GARCH E-mail : [email protected] VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR VaR VaR VaR VaR VaR VaR
Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )
1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t
fiš„v6.dvi
(2001) 49 2 305 315 EXCEL E-Decomp 1 2001 4 26 2001 7 27 E-Decomp E-Decomp Microsoft EXCEL 1 Web Web Decomp 2 R R-(D)COM Interface Web Decomp Decomp EXCEL. 1. E-Decomp E-Decomp Microsoft EXCEL (1997) Web
, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1
2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)
3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)
ばらつき抑制のための確率最適制御
( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y
seminar0220a.dvi
1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }
dvi
2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30
M&A の経済分析:M&A はなぜ増加したのか
RIETI Discussion Paper Series 06-J-034 RIETI Discussion Paper Series 06-J-034 M&A の経済分析 :M&A はなぜ増加したのか 蟻川靖浩 宮島英昭 ( 早稲田大学 RIETI) 2006 年 4 月 要旨 1990 年代以降の M&A の急増の主要な要因は 産業や企業の成長性や収益性へのショックである とりわけ M&A を活発に行っている産業あるいは企業の特性としては
日経225オプションデータを使ったGARCHオプション価格付けモデルの検証
GARCH GARCH GJREGARCH Duan Duan t GARCHGJREGARCH GARCH GJR EGARCHGARCHGJRt E-mail: [email protected] Black and ScholesBS Engle ARCHautoregressive conditional heteroskedasticity BollerslevGARCHgeneralized
& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),
.... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov
2
Copyright 2008 Nara Institute of Science and Technology / Osaka University 2 Copyright 2008 Nara Institute of Science and Technology / Osaka University CHAOS Report in US 1994 http://www.standishgroup.com/sample_research/
産業・企業レベルデータで見た日本の経済成長.pdf
2003 11 10 IT IT JIP JCER ) 2003 CD-ROM http://www.esri.go.jp/jp/archive/bun/bun170/170index. html 1 JIP Jorgenson, Mun, andstiroh (2002) GDP 2 3 1951 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN
IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:
LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)
LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly
Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow
Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured
X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I
(missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely
競売不動産からみた首都圏地価の動向
E-mail : [email protected] http://bit.sikkou.jp STYLE m m LancasterRosen Suzaki and Ohta Nagai, Kondo and Ohta i P i n lnp i = + jln X ij + k D ik + TD i + i. m j =1 k =1 X ij j D ik k TD i
bottleneckjapanese.dvi
1 M&A Keywords:,. Address: 742-1, Higashinakano, Hachioji-shi, Tokyo 192-09,Japan fax:+81 426 74 425 E-mail: [email protected] ; [email protected] 1 Yang and Kawashima(2008) 1 2 ( MVI
2
[email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)
(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,
[II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]
上場変更と株価:株主分散と流動性変化のインパクト
Merton Amihud and Mendelson NASDAQ JASDAQ JASDAQ JASDAQ QUICK [email protected] [email protected] [email protected] [email protected] JASDAQ JASDAQ Merton
z.prn(Gray)
1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]
[2], [3] Bremer [3] Fortune % Overreaction hypothesis Benou [2] 1 20% [9] 1 [10] 1 [1], [4], [5], [6], [7], [8] [1] [8] [6] [2], [3] stylized f
1,a) 2,3 3,4 2012 1 26, 2012 7 2 1 An Analysis on the Reversal Mechanism for Large Stock Price Declines Using Artificial Markets Isao Yagi 1,a) Takanobu Mizuta 2,3 Kiyoshi Izumi 3,4 Received: January 26,
「国債の金利推定モデルに関する研究会」報告書
: LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: [email protected], E-mail: [email protected] 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)
Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich
Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―
E-mail: [email protected] E-mail: [email protected] Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al LTCMLong Term Capital Management Fed G G T
untitled
Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1
4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model
1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14
1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])
Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward
わが国企業による株主還元策の決定要因:配当・自社株消却のインセンティブを巡る実証分析
* [email protected] ** [email protected] No.05-J-6 2005 4 103-8660 30 No.05-J-6 2005 4 * ** 1990 1 2 1990 * [email protected] ** [email protected] 1 1990 1 1990 1 [2004]
わが国のレポ市場について―理論的整理と実証分析―
GCGC SC GCSC SC SC E-mail: [email protected] E-mail: [email protected] GC general collateralscspecial collateral Griffiths and Winters GCFF Jordan and JordanDuffie matched book GC GC SC DuffieKrishnamurthy
