カルマンフィルターによるベータ推定( )

Size: px
Start display at page:

Download "カルマンフィルターによるベータ推定( )"

Transcription

1 β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. [email protected]., 104

2 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the Capital Asset Pricing Model CAPM) CAPM 1 β i Campbell, Lo, and MacKinlay (1996) CAPM TOPIX CAPM Roll Roll (1977) (2003) CAPM β i β i β i 1 TOPIX 1 22 β i β i CAPM CAPM Sharpe (1964) Lintner (1965) CAPM E[R i R f ]=β i (E[R m R f ]) β i = Cov[R i,r m ] Var[R m ] (2) R i i R m R f β i R m R f R i R f CAPM CAPM 1 β i β i Campbell, Lo, and MacKinlay (1996) β i CAPM Roll TOPIX CAPM β i β i Blume (1971, 1975) Clarkson and Thompson (1990) β 1 β i

3 β i smoothness priors Smoothness priors β i β i Kalman (1960) (2) β i β i Kalman (1960) β i β i Zalewska (2004) β Zalewska (2004) AIC (Akaike Information Criterion) 2 i Z i (t) =β i Z m (t)+α i (3) Z i (t) E[R i R f ] Z m (t) E[R m R f ] α i i CAPM β i β i β i β i (t) β i (t) ν i (t) =β i (t) β i (t 1), (4) ν i (t) N(0,τ 2 i ) τ i i smoothness priors (4) Kitagawa and Gersch (1985) smootness priors smoothness priors (3) (4) β i (t) =β i (t 1) + ν i (t) (5) Z i (t) =Z m (t)β i (t)+ɛ i (t) (6) ɛ i (t) ɛ i (t) N(0,σ 2 i ) σ i i (5) (6) β i (t) 2 Kalman (1960) β i (t) β i (t) x(t t j), [j =0, 1, ] β i (t t 1) = β i (t 1 t 1), V (t t 1) = V (t 1 t 1) + τi 2, (7) 2 (1993) Durbin and Koopman (2001) Hamilton (1994) 106

4 K(t) =V (t t 1)Z m (t){z m (t)v (t t 1)Z m (t)+σi 2 } 1, β i (t t) =β i (t t 1) + K(t){Z i (t) Z m (t)β i (t t 1)}, V (t t) ={1 K(t)Z m (t)}v (t t 1), (8) V (t t j) =E[{β i (t) β i (t t j)} 2 ] β(0 0) V (0 0) β i (t) Akaike (1973) AIC (Akaike Information Criterion) AIC AIC(i) = 2l( ˆθ i )+2p (9) l(θ i ) p ˆθ i AIC i {Z i (1),,Z i (T )} f(z i (1),,Z i (T ) θ i )= T f(z i (t) Z i (1),,Z i (t); θ i ), (10) t=1 θ i =(σ i,τ i ) f(z i (t) Z i (1),,Z i (t); θ i ) f(z i (t) Z i (1),,Z i (t); θ i ) 1 [ = 2πv2 (t) exp 1 2v 2 (t) (Z i(t) Z m (t)β i (t t 1)) 2] (11) l(θ i )= 1 2 { T log(2π)+ + T t=1 T log v 2 (t) t=1 1 v 2 (t) (Z i(t) Z m (t)β i (t t 1)) 2}, (12) v 2 (t) =Z m (t)v (t t 1)Z m (t)+σi 2 R optim Nelder-Mead TOPIX TOPIX LIBOR 3 LIBOR Campbell, Lo, and MacKinlay (1996) pp

5 ( ) / /12 TOPIX 1998/ /12 LIBOR / /12 1: R i = log P t P t 1, (13) P t TOPIX (12) R optim β i (t) (5) (6) τ i, σ i, AIC optim 0 4 (Bowman-Shenton (Jarque-Bera) ) Ljung-Box β Quantile-Quantile Quantile-Quantile 2 2 code optim β V (0 0) β CEO β 2 3 β β β 4 NTT IT β IT IT 5 β IT 2000 β IT σ 2 2 β TOPIX 4 nlm

6 Code AIC σ τ NTT SONY KDDI : 109

7 s Time 1: s Time 2: β 3.3 ν i (t) ɛ i (t) 110

8 s Time 3: s Time 4: NTT 1. Quantile-Quantile 2. Bowman-Shenton (Jarque-Bera) 3. Ljung-Box Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box 3 p 4 3 *** 1% ** 5% Ljung-Box

9 s Time 5: Bowman-Shenton β 4 1. β 2. β 3. β β β i Kitagawa (1993, 1996) Gordon (1993) 112

10 Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box (p ) (p ) (p ) (p ) NTT *** *** SONY ** ** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** KDDI *** *** *** *** *** *** *** *** *** *** : 113

11 [1] (1993) FORTRAN 77 [2] (2003) 41 6 [3] Akaike, H., (1973), Information theory and an extension of the maximum likelihood principle, Proc. 2nd International Symposium on Information Theory (B. N. Petrov and F. Csaki eds.) Akademiai Kiado, Budapest, [4] Blume, M.E., (1971), On the Assessment of Risk, Journal of Finance, 24, 1-9. [5] Blume, M. E., (1975), s and their Regression Tendencies, Journal of Finance, 30, [6] Campbell, Lo, and MacKinlay (1996), The Econometrics of the Financial Markets, Princeton Press. [7] Clarkson, P.M. and R. Thompson, (1990), Empirical Estimates of When Investors Face Estimation Risk, Journal of Finance, 45, 2, [8] Durbin, J. and Koopman, S.J., (2001), Time Series Analysis by State Space Methods, Oxford University Press. [9] Gordon, NJ, Salmond, D. J., Smith. A. M., (1993), Novel approach to nonlinear/non-gaussian Bayeaian state estimation, IEEE Proceedings-F, 140 (2), [10] Hamilton, J. D., (1994), Time Series Analysis, Princeton University Press. [11] Kalman, R. E., (1960), A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME-Journal of Basic Engineering, [12] Kitagawa, G., (1993), A Moneta Carlo Filtering and smoothing method for non-gaussian nonlinear state space models, Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time Series Analysis, , Honolulu, Hawaii, January [13] Kitagawa, G., (1996), Monte Carlo filter and smoother for non-gaussian nonlinear state space models, Journal of Computational and Graphical Statistics, Vol.5, No.1, [14] Kitagawa, G. and Gersch, W., (1985), A Smoothness Priors Time Varying AR Coefficient Modeling of Nonstationary Covariance Time Series, IEEE Trans. Automat. Control, Vol AC-30, No.1, pp [15] Lintner, J., (1965), The Valuation of Risk Assets and Selection of Risky Investments in Stock Portfolios and Capital Budgets, Review of Economics and Statistics, 47, [16] Markowitz, H. M., (1952), Portfolio Selection, Journal of Finance, 7, no. 1, [17] Roll, R., (1977), A Critique of the Asset Pricing Theory s Tests: Part I, Journal of Financial Economics, 4, [18] Sharpe, W. F., (1964), Capital Asset Prices: A Theory of Market Equilibrium under Condition of Risk, Journal of Finance, 19, [19] Shiller, R., (1973), A Distributed Lag Estimator Derived from Smoothness Priors, Econometrica, vol. 41, No.4, pp [20] Zalewska, A., (2004), Evolving character of the CAPM beta of the case of the telecom industry, an Indepen working paper. 114

12 urns and Returns s Measurement Equation System Equation : NTT urns and Returns s Measurement Equation System Equation : SONY 115

13 urns and Returns s Measurement Equation System Equation : urns and Returns s Measurement Equation System Equation : 116

14 urns and Returns s Measurement Equation System Equation : urns and Returns s Measurement Equation System Equation : 117

15 urns and Returns s : urns and Returns s : 118

16 urns and Returns s : urns and Returns s : 119

17 urns and Returns s : urns and Returns s : 120

18 urns and Returns s : urns and Returns s : 121

19 urns and Returns s : urns and Returns s : KDDI 122

20 urns and Returns s : urns and Returns s : 123

21 urns and Returns s : urns and Returns s : 124

22 urns and Returns s : urns and Returns s : 125

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A) Discussion Paper Series A No.425 2002 2 186-8603 [email protected] 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J- Vol.8 No.2 1 9 (July 2015) 1,a) 2 3 2012 1 5 2012 3 24, 2013 12 12 2 1 2 A Factor Model for Measuring Market Risk in Real Estate Investment Hiroshi Ishijima 1,a) Akira Maeda 2 Tomohiko Taniyama 3 Received:

More information

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i 1 Idiosyncratic,, Idiosyncratic (I- ) I- 1 I- I- Jensen I- Fama-French 3 I- Fama-French 3 1 Fama-French (FF) 3 [6] (Capital Asset Pricing Model; CAPM [12, 15]) CAPM ( [2, 10, 14, 16]) [18] Idiosyncratic

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応 VaR VaR VaR VaR GARCH E-mail : [email protected] VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR VaR VaR VaR VaR VaR VaR

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

fiš„v6.dvi

fiš„v6.dvi (2001) 49 2 305 315 EXCEL E-Decomp 1 2001 4 26 2001 7 27 E-Decomp E-Decomp Microsoft EXCEL 1 Web Web Decomp 2 R R-(D)COM Interface Web Decomp Decomp EXCEL. 1. E-Decomp E-Decomp Microsoft EXCEL (1997) Web

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

M&A の経済分析:M&A はなぜ増加したのか

M&A の経済分析:M&A はなぜ増加したのか RIETI Discussion Paper Series 06-J-034 RIETI Discussion Paper Series 06-J-034 M&A の経済分析 :M&A はなぜ増加したのか 蟻川靖浩 宮島英昭 ( 早稲田大学 RIETI) 2006 年 4 月 要旨 1990 年代以降の M&A の急増の主要な要因は 産業や企業の成長性や収益性へのショックである とりわけ M&A を活発に行っている産業あるいは企業の特性としては

More information

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証

日経225オプションデータを使ったGARCHオプション価格付けモデルの検証 GARCH GARCH GJREGARCH Duan Duan t GARCHGJREGARCH GARCH GJR EGARCHGARCHGJRt E-mail: [email protected] Black and ScholesBS Engle ARCHautoregressive conditional heteroskedasticity BollerslevGARCHgeneralized

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

2

2 Copyright 2008 Nara Institute of Science and Technology / Osaka University 2 Copyright 2008 Nara Institute of Science and Technology / Osaka University CHAOS Report in US 1994 http://www.standishgroup.com/sample_research/

More information

産業・企業レベルデータで見た日本の経済成長.pdf

産業・企業レベルデータで見た日本の経済成長.pdf 2003 11 10 IT IT JIP JCER ) 2003 CD-ROM http://www.esri.go.jp/jp/archive/bun/bun170/170index. html 1 JIP Jorgenson, Mun, andstiroh (2002) GDP 2 3 1951 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail [email protected] 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

競売不動産からみた首都圏地価の動向

競売不動産からみた首都圏地価の動向 E-mail : [email protected] http://bit.sikkou.jp STYLE m m LancasterRosen Suzaki and Ohta Nagai, Kondo and Ohta i P i n lnp i = + jln X ij + k D ik + TD i + i. m j =1 k =1 X ij j D ik k TD i

More information

bottleneckjapanese.dvi

bottleneckjapanese.dvi 1 M&A Keywords:,. Address: 742-1, Higashinakano, Hachioji-shi, Tokyo 192-09,Japan fax:+81 426 74 425 E-mail: [email protected] ; [email protected] 1 Yang and Kawashima(2008) 1 2 ( MVI

More information

2 [email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail [email protected]

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

[2], [3] Bremer [3] Fortune % Overreaction hypothesis Benou [2] 1 20% [9] 1 [10] 1 [1], [4], [5], [6], [7], [8] [1] [8] [6] [2], [3] stylized f

[2], [3] Bremer [3] Fortune % Overreaction hypothesis Benou [2] 1 20% [9] 1 [10] 1 [1], [4], [5], [6], [7], [8] [1] [8] [6] [2], [3] stylized f 1,a) 2,3 3,4 2012 1 26, 2012 7 2 1 An Analysis on the Reversal Mechanism for Large Stock Price Declines Using Artificial Markets Isao Yagi 1,a) Takanobu Mizuta 2,3 Kiyoshi Izumi 3,4 Received: January 26,

More information

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: [email protected], E-mail: [email protected] 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト― E-mail: [email protected] E-mail: [email protected] Bangia et al. G Bangia et al. exogenous liquidity risk endogenous liquidity risk et al LTCMLong Term Capital Management Fed G G T

More information

untitled

untitled Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6]) Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward

More information

わが国のレポ市場について―理論的整理と実証分析―

わが国のレポ市場について―理論的整理と実証分析― GCGC SC GCSC SC SC E-mail: [email protected] E-mail: [email protected] GC general collateralscspecial collateral Griffiths and Winters GCFF Jordan and JordanDuffie matched book GC GC SC DuffieKrishnamurthy

More information