-2-

Size: px
Start display at page:

Download "-2-"

Transcription

1

2 -2-

3 -3-

4 -4-

5 -5-

6 -6-

7 -7-

8 -8-

9 -9-

10 -10-

11 -11-

12 -12-

13 -13-

14 -14-

15 -15-

16 -16-

17 -17-

18 -18-

19 -19-

20 -20-

21 XYZ -21-

22 -22-

23 -23-

24 -24-

25 -25-

2005

2005 20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6

More information

TIJ日本語教育研究会通信40号

TIJ日本語教育研究会通信40号 XYZ AX B X Y Z A A ) AA B A D ) AD B D E AE B E A B ) A B A B A B A B A ( ) B A B A B C ( ) A B ( ) A B ( ) A B A ( ) B A B A B B A B 21 21 A B ( ) ( ) ( ) ( ) ( ) ) 300 A B BBQ vs vs A B 4 4 RPG 10 A

More information

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3 203 24 203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) 202 20 a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3 + (z 2 ) 3 3x 2 y 2 z 2 ( ) 3xyz 3(xyz) 2.

More information

2

2 a DEF MNO WXYZ ABC JKL TUV GHI PQRS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2 3 RUN VB-F050 ALARM a 1 2 4 3 5 6 4 7 5 8 9 10 6 11 12 13 7 14 15 16 18 17 8 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 VB-F050

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

日東工業 らべるくんWeb 操作説明書

日東工業 らべるくんWeb 操作説明書 !"#$%&'()*+,-./!"# 01%23 45 67!"#$89:;?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@6 0067;B@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@6

More information

131 71 7 1 71 71 71 71 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 71 7 1 71 7 1 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 7 1 71 7 1 71

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

CG38.PDF

CG38.PDF ............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83

More information

1

1 Chapter Fgure.: x x s T = 2 mv2 mgx = 0 (.) s = X 0 x 0 x x v = 2gx + + ( ) 2 2 y x 2 ( ) 2 2 y x 2 /2gx (.2) y(x) 2 . S = L(t, r, ṙ) r(t) ṙ = r L(t, r, ṙ) t, r, ṙ L x t r, ṙ r + δr, ṙ + δṙ δs δs = δr

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

A9RF112.tmp.pdf

A9RF112.tmp.pdf 9 1-1 9 9 10 11 13 17 1-2 18 18 19 20 21 21 22 23 24 26 2-1 26 26 26 30 33 35 2-2 36 36 38 40 44 44 45 3-1 45 45 47 49 51 53 58 3-2 59 59 60 62 64 68 69 70 4-1 70 70 72 4-2 73 73 74 74 75 76 77 77 79 80

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx ver. 1.0 18 6 20 F = f m r = F r = 0 F = 0 X = Y = Z = 0 (1 δr = (δx, δy, δz F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2 δr (2 1 (1 (2 n (X δx + Y δy + Z δz = 0 (3 1 F F = (X, Y, Z δr = (δx, δy, δz S δr δw

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

NV-XYZ777

NV-XYZ777 2-629-918-01(1) HDD AV NAVI SYSTEM NV-XYZ777EX/XYZ777 2005 Sony Corporation Printed in Japan ...3...6...8...10 GPS GPS...13 GPS...13 GPS...14 TV/FM TV/FM...15...16 TV/FM...17 TV/FM...18 XYZ XYZ...23 XYZ...24

More information

. p.1/14

. p.1/14 . p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 [email protected] http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

1.1 EPS... 3 1.2 EPS... 3 1.2.1... 3 1.2.2... 4 1.3... 5 2.1 BMP... 6 2.2 BMP... 6 2.2.1... 6 2.2.2... 6 2.2.3 (Appendix )... 7 3.1 TIFF... 8 3.2 TIFF... 8 3.2.1... 8 3.2.2... 9 3.2.3 (Appendix )... 9

More information

2.2 2 3 2 1 1 OKOK 5.4.5 5.4.5PantonePantone DeltaGraph PantoneDeltaGraph MacWindows REDROCK DeltaGraph DeltaGraph DeltaGraph

2.2 2 3 2 1 1 OKOK 5.4.5 5.4.5PantonePantone DeltaGraph PantoneDeltaGraph MacWindows REDROCK DeltaGraph DeltaGraph DeltaGraph DeltaGraph 5.4.5vaJ for Windows DeltaGraph 5.4.5va 5.4.5va DeltaGraph 5.4.5v 5.4.5v *5.4.5v *5.4.5 1. 3 91 12 153 2. 2.2 2 3 2 1 1 OKOK 5.4.5 5.4.5PantonePantone DeltaGraph PantoneDeltaGraph MacWindows

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

CDR-201A

CDR-201A CDR-201A REMOTE CONTROLLER RC-448C >10 GHI PQRS 7 10/0 TUV 1 J K L W XYZ STANDBY/ ON 2 3 MNO ENTER CLEAR SCROLL NAME OPEN / CLOSE z REPEAT RANDOM MEMORY 4 5 6 ABC DEF 8 9 2 3 4 5 6 7 8 REMOTE CONTROLLER

More information

CDR-SX7

CDR-SX7 CDR-SX7 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 AUDIO CD ORDER ON / OFF CD DUBBING DUAL OPTICAL INPUT EDIT / NO YES 6 7 STANDBY INPUT FINALIZE CDR-SX7 8 16 15 14 13 12 11 10 9 A C B M D E L K J I H G F 17 18 19

More information

オラクルのバックアップとリカバリの必須要件

オラクルのバックアップとリカバリの必須要件 WHITE PAPER 1 WHITE PAPER...3...3...4 NetBackup Oracle...6...7 VERITAS NetBackup Oracle Agent...7 VERITAS NetBackup Oracle Agent...8 VERITAS NetBackup Oracle...8...9 GUI RMAN...9 VERITAS NetBackup Oracle

More information

A13 C A139 A137 A131 A138 V CV FC/SMA 2.51/2.5 MM FF 4 4 5 5 6 A11971 A136 ND A132 1 mm ND1 % 1 %2 6 7 7 A133-9 15 mm 8 A134-9 A135 A135-9 A1127 A1858 A176 A1859 C A11213 C A9865 45V R T 11 15 mm XY XZ

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

-- 15!!! 20 1 196786 11 197793 16 2 2 30 11 170 3 100 3 1970 -- 1929 1948! 19?? IT 2009 4 1941 45 = 1968! 21 21!! (197282)!? 19 20 5 1942 1959 20 198232 1891-1966!30 4050? 1979! 2005 2016 6 300 2500 230

More information

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12 Chapter 1 Mathematica Mathematica Mathematica 1.1 Mathematica Mathematica (Wolfram Research) Windows, Mac OS X, Linux OS Mathematica 88 2012 11 9 2 Mathematica 2 1.2 Mathematica Mathematica 2 1 Mathematica

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c 10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197 10.1

More information

DVIOUT

DVIOUT 2 2005 2 1 2 1 1 1: 1 Digital Single Lens Re ex:dslr) DSLR (Digital Still Camera: DSC DSC DSLR DSC DSLR 2 DSLR FSLR) FSLR FSLR DSLR 2 DSLR DSLR F DSLR FSLR DSLR DSLR DSLR DSLR USB DSLR 2 2: DSLR DSLR OM

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

4 $ alias elixirc="elixirc --ignore-module-conflict" warning redefining module User (current version loaded from Elixir.User.beam) user.ex1 User alias

4 $ alias elixirc=elixirc --ignore-module-conflict warning redefining module User (current version loaded from Elixir.User.beam) user.ex1 User alias 4 NanoPlanner Elixir Elixir/Phoenix 14 4.1 Elixir ~/elixir-primer/v02/ch04 $ mkdir -p ~/elixir-primer/v02/ch04 $ cd ~/elixir-primer/v02/ch04 ~/elixir-primer/v02 35 4 $ alias elixirc="elixirc --ignore-module-conflict"

More information

Taro10-測地成果2000マニュアル.PDF

Taro10-測地成果2000マニュアル.PDF 国土地理院技術資料 A 1-244 測地成果 2000 導入に伴う公共測量成果座標変換マニュアル 平成 13 年 3 月国土交通省国土地理院 International Terrestrial Reference Frame Geodetic Reference System 1980 1980-1- GRS80 Very Long Base- line Interferometry Global

More information

デジタルオルソ作成マニュアルに関する調査研究作業

デジタルオルソ作成マニュアルに関する調査研究作業 A1-No.289 16 1 ...1....1....1....4...5...11... 11...16...16...16...18...22...24...26...29...31...31....31. (TIN)...31....31....31...41....41....43 . 14 20 IT. GZ-1 OR-1 1 1 1 2 2 2 3 A A B A a a a a 3

More information

$ java StoreString abc abc ed abced twice abcedabced clear xyz xyz xyz bingo! abc bingo!abc ^Z mport java.io.*; ublic class StoreString { public static void main(string[] args) throws IOException{ BufferedReader

More information

SPP-E777/E777PG

SPP-E777/E777PG 3-222-217-03 (1) SPP-E777/E777PG 10 20 α-e 33 54 66 81 89 91 112 119 77 128 136 SPP-E777/E777 PG 2000 Sony Corporation 2 v v v 1 2 3 1 2 v 11 110... 4... 7... 8 1019... 10 1:... 12 2:... 15 3:... 16 4:...

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

P0001-P0017-›ºflÅŠpB5.qxd

P0001-P0017-›ºflÅŠpB5.qxd ZSE50F60F/ISE5060 Series IP65 (JIS-K2213) (JIS-K2213) (JIS-K6301) SUS630 SUS304 ZSE50F / ISE50 1 10-5 Pa. m 3 /s ZSE60F / ISE60 1 10-10 Pa. m 3 /s ZSE ISE ZSP PS ISA PSE IS ISG ZSM VCR,Swagelok Swagelok

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

1055075 1 1.1 5 5 1.2 6 1.3 10 1.3.1 10 1.3.2 10 1.3.3 12 1.3.4 13 1.3.5 15 1.4 16 1.4.1 16 1.4.2 19 1.4.3 19 25 1.5 28 2 29 2.1 29 1.1 31 2.2 32 2.2.1 32 2.2.2 38 2.2.3 6 40 2.3 45 2.3.1 45 2.3.2 45 2.3.3

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

超初心者用

超初心者用 3 1999 10 13 1. 2. hello.c printf( Hello, world! n ); cc hello.c a.out./a.out Hello, world printf( Hello, world! n ); 2 Hello, world printf n printf 3. ( ) int num; num = 100; num 100 100 num int num num

More information

1 2 3 3 1 1 1 3 4 5 1 2 1 113 10 3 11 110200 11 4 10 5 31 1 2 1 1 6 7 6 6 0 23 4 35 3 1 2 3 1 4 5 6 7 0 2 1 2 Web 1 2 Pay-easy 1 3 2 1 2 3 3 NHK 4 Pay- easy 511 11 6 3 4 7 8 910 1 No. 1 2 3 4 5 6 7 8 9

More information

明解Java入門編

明解Java入門編 1 Fig.1-1 4 Fig.1-1 1-1 1 Table 1-1 Ease of Development 1-1 Table 1-1 Java Development Kit 1 Java List 1-1 List 1-1 Chap01/Hello.java // class Hello { Java System.out.println("Java"); System.out.println("");

More information

Effective Android NDK Advanced Core Engineer

Effective Android NDK Advanced Core Engineer Effective Android NDK Advanced Core Engineer Effective Android NDK Effective Android NDK NDK NDK NDK JNI Effective Android NDK native java native NDK NDK NDK C, C++ native toolset Android java native NDK

More information