-2-

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "-2-"

Transcription

1

2 -2-

3 -3-

4 -4-

5 -5-

6 -6-

7 -7-

8 -8-

9 -9-

10 -10-

11 -11-

12 -12-

13 -13-

14 -14-

15 -15-

16 -16-

17 -17-

18 -18-

19 -19-

20 -20-

21 XYZ -21-

22 -22-

23 -23-

24 -24-

25 -25-

2005

2005 20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6

More information

TIJ日本語教育研究会通信40号

TIJ日本語教育研究会通信40号 XYZ AX B X Y Z A A ) AA B A D ) AD B D E AE B E A B ) A B A B A B A B A ( ) B A B A B C ( ) A B ( ) A B ( ) A B A ( ) B A B A B B A B 21 21 A B ( ) ( ) ( ) ( ) ( ) ) 300 A B BBQ vs vs A B 4 4 RPG 10 A

More information

7 3 4 5 a 6 7 8 9 a a a a a 0 3 4 5 6 7 8 9 0 3 DEF ABC 6 MNO 5 JKL 4 GHI 9 XYZ W 8 TUV 7 QRS P 0 POWER ON STD BY a 3 3 4 5 6 7 8 9 0 3 DEF ABC 6 MNO 5 JKL 4 GHI 9 XYZ W 8 TUV 7 QRS P 0 a a a a a a a

More information

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = = 4 1.. 3. 4. 1. 1 3 4 5 6 1 3 4 5 6. 1 1 1 A B P (A B) = P (A) + P (B) P (C) = P (A) P (B) 3. 1 1 P (A) = 1 P (A) A A 4. A B P A (B) = n(a B) n(a) = P (A B) P (A) 50 015 016 018 1 4 5 8 8 3 T 1 3 1 T T

More information

ppt

ppt No2 8 2011-2-3 (Voyager voyager ) NASA 1977 721.9kg 2 1 (The Sounds of Earth) 55 2 1977 1 1977 9 5 1979 3 5 1980 11 12 2007 7 19 154 8000 km 17.132km/s 2 1977 8 20 1979 7 9 1981 8 25 1986 1 24 1989 8 25

More information

1, 2

1, 2 ipad ipad 1, 2 3 1 4 1 1 5 1 1 6 1 2 ipad XYZ 7 1 100 20 3D 8 9 2 VR 360 1 All Aboard! Communication English Power On Communication English PROMINENCE Communication English NEW FAVORITE English Expression

More information

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3 203 24 203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) 202 20 a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3 + (z 2 ) 3 3x 2 y 2 z 2 ( ) 3xyz 3(xyz) 2.

More information

2

2 a DEF MNO WXYZ ABC JKL TUV GHI PQRS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2 3 RUN VB-F050 ALARM a 1 2 4 3 5 6 4 7 5 8 9 10 6 11 12 13 7 14 15 16 18 17 8 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 VB-F050

More information

1.1 1 A

1.1 1 A . A..2 2 2. () (xyz) ( xyz) ( xy z) = (x x)yz ( xy z) = yz ( xy z) = y(z ( x z)) = y((z x)(z z)) = y( x z) (2) (3) M aj (x, y, M aj ( x, ȳ, z)) = xy ȳm aj ( x, ȳ, z) M aj ( x, ȳ, z)x M aj (x, y, z) x =

More information

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β) 19 7 12 1 t F := t 2 + at + b D := a 2 4b F = 0 a, b 1.1 F = 0 α, β α β a, b /stlasadisc.tex, cusp.tex, toileta.eps, toiletb.eps, fromatob.tex 1 F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t

More information

日東工業 らべるくんWeb 操作説明書

日東工業 らべるくんWeb 操作説明書 !"#$%&'()*+,-./!"# 01%23 45 67!"#$89:;?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@6 0067;B@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@6

More information

131 71 7 1 71 71 71 71 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 71 7 1 71 7 1 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 7 1 71 7 1 71

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 200534 chiba_ryozo@hirobo.co. 125cc GPS PC Zooming,Focus (ON/OFF) CCD CCD I/F CC 2,500mm L 2.4/ 2.4/ 2.4G 3 自律制御システムの概要 制御装置のブロック図 制御装置のブロック図 単独測位データ 単独測位データ 制御装置本体 制御装置本体 オペレーターアシスト 速度制御 オペレーターアシスト

More information

iV-200

iV-200 CF CARD 1 2 CF CARD 3 4 5 6 7 8 CF CARD 9 USB CF CARD TEST RGB-OUT RGB-IN ON OFF 10 104-0032 Tel:03-3537-1070 Fax:03-3537-1071http://www.poladigital.co.jp/ CF CARD 11 USB ON CF CARD CF CARD TEST RGB-OUT

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

CG38.PDF

CG38.PDF ............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83

More information

1

1 Chapter Fgure.: x x s T = 2 mv2 mgx = 0 (.) s = X 0 x 0 x x v = 2gx + + ( ) 2 2 y x 2 ( ) 2 2 y x 2 /2gx (.2) y(x) 2 . S = L(t, r, ṙ) r(t) ṙ = r L(t, r, ṙ) t, r, ṙ L x t r, ṙ r + δr, ṙ + δṙ δs δs = δr

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

A9RF112.tmp.pdf

A9RF112.tmp.pdf 9 1-1 9 9 10 11 13 17 1-2 18 18 19 20 21 21 22 23 24 26 2-1 26 26 26 30 33 35 2-2 36 36 38 40 44 44 45 3-1 45 45 47 49 51 53 58 3-2 59 59 60 62 64 68 69 70 4-1 70 70 72 4-2 73 73 74 74 75 76 77 77 79 80

More information

25 2014 2 i 1 Kinect 17% 0% 100% iii iii v vii 1 1 1.1............................... 1 1.2............................... 2 1.3.............................. 2 2 3 2.1.................................

More information

P.380 P.3 P.39 P FIX FIX J 379

P.380 P.3 P.39 P FIX FIX J 379 J 33 55 3 330mil3 330mil3 55 3 3330mil3 33 33033 3303 33033 33 55 3 33303 3303 33303 FIX FIX 0163 378 P.380 P.3 P.39 P. 0163 FIX FIX J 379 J B1 B7 H S1 YW JXU--J-TW " #$% & FIX FIX # ()*+ " %! ' ' & &

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx ver. 1.0 18 6 20 F = f m r = F r = 0 F = 0 X = Y = Z = 0 (1 δr = (δx, δy, δz F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2 δr (2 1 (1 (2 n (X δx + Y δy + Z δz = 0 (3 1 F F = (X, Y, Z δr = (δx, δy, δz S δr δw

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

NV-XYZ777

NV-XYZ777 2-629-918-01(1) HDD AV NAVI SYSTEM NV-XYZ777EX/XYZ777 2005 Sony Corporation Printed in Japan ...3...6...8...10 GPS GPS...13 GPS...13 GPS...14 TV/FM TV/FM...15...16 TV/FM...17 TV/FM...18 XYZ XYZ...23 XYZ...24

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

. p.1/14

. p.1/14 . p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y

More information

ZENBI 全国美術館会議機関誌

ZENBI 全国美術館会議機関誌 ZENBI HISTORY ZENBI 3 60 30 3 40 20 10 32 39 31 75 3 2 21 4 1992 5 208 74 5 2008 14 2982160 182 10 3 vol.2 ZENBI 4 1 2011 7 3 18 23 3 4 27 9 17 5 26 7 22 45 3 MOA MOA 3 6 25 D 2013 3 9 N.E.blood 212 18

More information

3dcg.PDF

3dcg.PDF 3 13 2 9 1. Introduction 11.CG 2. 3 21. 3 22. 23. 231.3 24. 244. 3. 31. 32. 33. 34. 4. 2 1. Introduction 11.CG CRT CG TV CG CG CG CG NASA CG CG CG CG CG CG JCGL CG CG CG CG CG CG 3 CG LSI CG CG 4 2. 3

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

untitled

untitled E- E- E- E- 123 21 9 14 21 1 3 1 1 F-7 H-2/3 H-1/5 V-1/5 F-9 27 29 (t = t )W(t ) E(t ) 1) 2 1 124 H-2/3 H-1/5 V-1/5 F-9 event X dire. Y dire. Max Acc. W(t ) W(t ) E(t ) E(t ) Max Acc. W(t ) W(t ) E(t )

More information

1.1 EPS... 3 1.2 EPS... 3 1.2.1... 3 1.2.2... 4 1.3... 5 2.1 BMP... 6 2.2 BMP... 6 2.2.1... 6 2.2.2... 6 2.2.3 (Appendix )... 7 3.1 TIFF... 8 3.2 TIFF... 8 3.2.1... 8 3.2.2... 9 3.2.3 (Appendix )... 9

More information

2.2 2 3 2 1 1 OKOK 5.4.5 5.4.5PantonePantone DeltaGraph PantoneDeltaGraph MacWindows REDROCK DeltaGraph DeltaGraph DeltaGraph

2.2 2 3 2 1 1 OKOK 5.4.5 5.4.5PantonePantone DeltaGraph PantoneDeltaGraph MacWindows REDROCK DeltaGraph DeltaGraph DeltaGraph DeltaGraph 5.4.5vaJ for Windows DeltaGraph 5.4.5va 5.4.5va DeltaGraph 5.4.5v 5.4.5v *5.4.5v *5.4.5 1. 3 91 12 153 2. 2.2 2 3 2 1 1 OKOK 5.4.5 5.4.5PantonePantone DeltaGraph PantoneDeltaGraph MacWindows

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

Catalog No (2)

Catalog No (2) Catalog No.14004 (2) Software QUICK SCOPE High-Accuracy X, Y, Z Optical 1 Quick Scope QSPAK FORMPAK-QV QS XYZ CNC X Y Z 200 250 100mm 9.5 7.1mm 1.3 1.0mm QS-L/AFB XYZ XY: Z: CNC X Y Z 200 100 150mm 300

More information

CDR-201A

CDR-201A CDR-201A REMOTE CONTROLLER RC-448C >10 GHI PQRS 7 10/0 TUV 1 J K L W XYZ STANDBY/ ON 2 3 MNO ENTER CLEAR SCROLL NAME OPEN / CLOSE z REPEAT RANDOM MEMORY 4 5 6 ABC DEF 8 9 2 3 4 5 6 7 8 REMOTE CONTROLLER

More information

目録表紙

目録表紙 1 9 14 29 33 38 61 94 99 120 124 129 131 137 140 -- 15!!! 20 1 2 30 2 11-3 1970 3 1929 1948! 19??IT 1941 45 = 4 1968! 21 21!! (197282)!? 19 20 1942 1959 5 20 198232 1891-1966!30 4050 6 300 =! 34 700 =?178039

More information

オラクルのバックアップとリカバリの必須要件

オラクルのバックアップとリカバリの必須要件 WHITE PAPER 1 WHITE PAPER...3...3...4 NetBackup Oracle...6...7 VERITAS NetBackup Oracle Agent...7 VERITAS NetBackup Oracle Agent...8 VERITAS NetBackup Oracle...8...9 GUI RMAN...9 VERITAS NetBackup Oracle

More information

A13 C A139 A137 A131 A138 V CV FC/SMA 2.51/2.5 MM FF 4 4 5 5 6 A11971 A136 ND A132 1 mm ND1 % 1 %2 6 7 7 A133-9 15 mm 8 A134-9 A135 A135-9 A1127 A1858 A176 A1859 C A11213 C A9865 45V R T 11 15 mm XY XZ

More information

第7章_秋山.PDF

第7章_秋山.PDF USEF USERS SERVIS-1 NEDO USEF USERS 2002 9 10 H-A 500km 30.4 2003 5 30 580km USERS SERVIS 2003 10 30 ROCKOT 1,000km 99.5 SERVIS-1 USERS SERVIS-1 USERS SERVIS-1 USERS SERVIS-1 1 USERS EMS USERS S1 S4 S2

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

-- 15!!! 20 1 196786 11 197793 16 2 2 30 11 170 3 100 3 1970 -- 1929 1948! 19?? IT 2009 4 1941 45 = 1968! 21 21!! (197282)!? 19 20 5 1942 1959 20 198232 1891-1966!30 4050? 1979! 2005 2016 6 300 2500 230

More information

SPP-C333/C333PG

SPP-C333/C333PG 3-222-213-04 (1) 10 19 30 40 50 56 58 72 79 (77) 86 94 SPP-C333/C333 PG 2000 Sony Corporation 2 v v v 1 2 3 1 2 v 11 110... 4... 7... 8 1018... 10 1:... 12 2:... 15 3:... 16 4:... 17... 19... 21... 22...

More information

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12 Chapter 1 Mathematica Mathematica Mathematica 1.1 Mathematica Mathematica (Wolfram Research) Windows, Mac OS X, Linux OS Mathematica 88 2012 11 9 2 Mathematica 2 1.2 Mathematica Mathematica 2 1 Mathematica

More information

書誌データ151020.xlsx

書誌データ151020.xlsx -- 18 15 !!! 20 20 21 PKO 10 19371959 20 2 30 11 - 3 1970 1927 1929 19??IT 1948! = 21 21 1941 45 1968!!?!! 19 20 (197282) 20 1942 1959 1891-1966 198232 ? "" 300 =! 34 = 1969919711 700 =?178039 100! 1995

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

(1) x 4.0 m/s x x=0 t=0 t=8.0 s 12 m/s x t=0 t v t v v-t x x=0 t x x=0 t=8.0 s x x =0 m (2) F k2 Q1, Q2 2 r F= Vt Vq I I= (1)

(1) x 4.0 m/s x x=0 t=0 t=8.0 s 12 m/s x t=0 t v t v v-t x x=0 t x x=0 t=8.0 s x x =0 m (2) F k2 Q1, Q2 2 r F= Vt Vq I I= (1) 2/ 土 28 5 7 10:30 11:20 似通った科目名がありますので注意してください. 受験許可されていない科目を解答した場合は無効 整理番号と科目コードは受験許可証とよく照合し正確に記入 30 10 11 12 01101 02607 02703 (1) x 4.0 m/s x x=0 t=0 t=8.0 s 12 m/s x t=0 t v t v v-t x x=0 t x x=0 t=8.0

More information

DVIOUT

DVIOUT 2 2005 2 1 2 1 1 1: 1 Digital Single Lens Re ex:dslr) DSLR (Digital Still Camera: DSC DSC DSLR DSC DSLR 2 DSLR FSLR) FSLR FSLR DSLR 2 DSLR DSLR F DSLR FSLR DSLR DSLR DSLR DSLR USB DSLR 2 2: DSLR DSLR OM

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

m/Ry 21 (1) 21 (2) 24 (3) Force/Torque 25 (4) 15m/Ry m/Ry 34 (1) 34

m/Ry 21 (1) 21 (2) 24 (3) Force/Torque 25 (4) 15m/Ry m/Ry 34 (1) 34 1051006 1. 3 1.1 5 2. 6 2.1 6 2.2 12 2.3 14 3. 19 3.1 19 3.2 19 3.3 21 3.3.1 15m/Ry 21 (1) 21 (2) 24 (3) Force/Torque 25 (4) 15m/Ry 29 3.3.2 25m/Ry 34 (1) 34 (2) 37 (3) Force/Torque 38 (4) 25m/Ry 41 3.4

More information

l3.pdf

l3.pdf 3 (R) (G) (B) 3 RGB PCCS 3 CIE XYZ xy CIE LUV CIE LAB srgbhsvyiqycbcr 3.1 3.1.1 3.1 24 3 3.1 3.2 380 nm 780 nm 650 nm 400 nm 3.2 3.1.2 3.3 3.2 25 3.3 3.4 2 LMS 3 3.4 L M L 3.2 PCCS CIE XYZCIE LUVCIE 26

More information

ELECTRONIC COMPONENTS & DEVICES

ELECTRONIC COMPONENTS & DEVICES CM DN/DR CF CT CX CD CA CU CM 21 W5R 15 1 A T CM DN/DR CF CT CX CD CA CU R5.5pF 1R 1pF 11 1pF 13 1pF 15 1µF JIS 3 63 5 15 15 168 F12 122 F13 1632 21 212 316 3216 32 3225 42 452 43 4532 52 572 55 575 E

More information

4 $ alias elixirc="elixirc --ignore-module-conflict" warning redefining module User (current version loaded from Elixir.User.beam) user.ex1 User alias

4 $ alias elixirc=elixirc --ignore-module-conflict warning redefining module User (current version loaded from Elixir.User.beam) user.ex1 User alias 4 NanoPlanner Elixir Elixir/Phoenix 14 4.1 Elixir ~/elixir-primer/v02/ch04 $ mkdir -p ~/elixir-primer/v02/ch04 $ cd ~/elixir-primer/v02/ch04 ~/elixir-primer/v02 35 4 $ alias elixirc="elixirc --ignore-module-conflict"

More information

Taro10-測地成果2000マニュアル.PDF

Taro10-測地成果2000マニュアル.PDF 国土地理院技術資料 A 1-244 測地成果 2000 導入に伴う公共測量成果座標変換マニュアル 平成 13 年 3 月国土交通省国土地理院 International Terrestrial Reference Frame Geodetic Reference System 1980 1980-1- GRS80 Very Long Base- line Interferometry Global

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

デジタルオルソ作成マニュアルに関する調査研究作業

デジタルオルソ作成マニュアルに関する調査研究作業 A1-No.289 16 1 ...1....1....1....4...5...11... 11...16...16...16...18...22...24...26...29...31...31....31. (TIN)...31....31....31...41....41....43 . 14 20 IT. GZ-1 OR-1 1 1 1 2 2 2 3 A A B A a a a a 3

More information

$ java StoreString abc abc ed abced twice abcedabced clear xyz xyz xyz bingo! abc bingo!abc ^Z mport java.io.*; ublic class StoreString { public static void main(string[] args) throws IOException{ BufferedReader

More information

2MANDSDS12-01... 1... 1... 1... 1... 1... 2... 2... 3... 3... 4... 4

2MANDSDS12-01... 1... 1... 1... 1... 1... 2... 2... 3... 3... 4... 4 1MANDSDS12-01 MANDSDS12 EC 2MANDSDS12-01... 1... 1... 1... 1... 1... 2... 2... 3... 3... 4... 4 . () () 1 2MANDSDS12-01 1-1. 6. Validation Agency 7. 1. 5. 3b. Maintenance Agency 9. Validation Group 4.

More information

3 3.1 3 [Set type:] 2 c 1 2 3 XYDY DY D dispersion 4 File New 3 NEW 3:

3 3.1 3 [Set type:] 2 c 1 2 3 XYDY DY D dispersion 4 File New 3 NEW 3: 2 3 2 Dt Import ASCII [Red sets] [Directories 2 [Files] 2 b OK 1 X 2 Y 2 Import ASCII b c 2: 3 3.1 3 [Set type:] 2 c 1 2 3 XYDY DY D dispersion 4 File New 3 NEW 3: 4 5 5.1 4 4 4: 5 5.2 Plot Axis properties

More information

SPP-E777/E777PG

SPP-E777/E777PG 3-222-217-03 (1) SPP-E777/E777PG 10 20 α-e 33 54 66 81 89 91 112 119 77 128 136 SPP-E777/E777 PG 2000 Sony Corporation 2 v v v 1 2 3 1 2 v 11 110... 4... 7... 8 1019... 10 1:... 12 2:... 15 3:... 16 4:...

More information

オートマトンと言語理論 テキスト 成蹊大学理工学部情報科学科 山本真基 ii iii 1 1 1.1.................................. 1 1.2................................ 5 1.3............................. 5 2 7 2.1..................................

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1 4203211003 2 4203219005 3 6115940003 4 611594000X 5 6115950002 6 9503004000 7 9503009106 8 9505100006 9 9505900003 10 9506400002 11 950640000X 12 95

1 4203211003 2 4203219005 3 6115940003 4 611594000X 5 6115950002 6 9503004000 7 9503009106 8 9505100006 9 9505900003 10 9506400002 11 950640000X 12 95 1 4203211003 2 4203219005 3 6115940003 4 611594000X 5 6115950002 6 9503004000 7 9503009106 8 9505100006 9 9505900003 10 9506400002 11 950640000X 12 950662000X 13 950669000X 14 9506910000 15 9506990006

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

1 1 2 3 3 1 1 1 3 4 5 1 2 1 113 10 3 11 110200 11 4 10 5 31 1 1 6 7 6 6 0 23 4 35 3 1 2 3 1 4 5 6 7 0 2 1 2 2 3 Web 1 2 Pay-easy 1 3 2 1 2 3 3 NHK 4 Pay- easy 511 11 6 7 8 910 1 No. 1 2 3 4 5 6 7 8 9 10

More information

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1) ( ) 1., : ;, ;, ; =. ( ).,.,,,., 2.,.,,.,.,,., y = f(x), f ( ).,,.,.,., U R m, F : U R n, M, f : M R p M, p,, R m,,, R m. 2009 A tamaru math.sci.hiroshima-u.ac.jp 1 ,.,. 2, R 2, ( ).,. 2.1 2.1. I R. c

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

G_CM3050S_IFU_2v0G_ja

G_CM3050S_IFU_2v0G_ja CM3050S 14044385108 - G 2.0 G - 11/2017 Leica Biosystems Nussloch GmbH Leica Biosystems Nussloch GmbH Web Cam Leica Biosystems Nussloch GmbH Heidelberger Str. 17-19 69226 Nussloch Germany Tel.: +49 -

More information

1 2 3 3 1 1 1 3 4 5 1 2 1 113 10 3 11 110200 11 4 10 5 31 1 2 1 1 6 7 6 6 0 23 4 35 3 1 2 3 1 4 5 6 7 0 2 1 2 Web 1 2 Pay-easy 1 3 2 1 2 3 3 NHK 4 Pay- easy 511 11 6 3 4 7 8 910 1 No. 1 2 3 4 5 6 7 8 9

More information

超初心者用

超初心者用 3 1999 10 13 1. 2. hello.c printf( Hello, world! n ); cc hello.c a.out./a.out Hello, world printf( Hello, world! n ); 2 Hello, world printf n printf 3. ( ) int num; num = 100; num 100 100 num int num num

More information

maxima matrix (%i1 (%o1 (%i2 (%o2 matrix([1,2,3],[4,5,6],[7,8,9]; ( matrix([a,b,c,d],[e,f,g,h]; a b c d e f g h matrix [ ] ma

maxima matrix (%i1 (%o1 (%i2 (%o2 matrix([1,2,3],[4,5,6],[7,8,9]; ( matrix([a,b,c,d],[e,f,g,h]; a b c d e f g h matrix [ ] ma maxima Contents 1. 2 1.1. 2 1.2. 2 1.3. ( 2 1.4. 3 1.5. 3 1.6. 3 1.7. 4 1.8. 4 1.9. 5 1.10. 5 1.11. 5 1.12. 6 1.13. 6 2. 7 2.1. 7 2.2. 8 2.3. 9 2.4. 9 2.5. 10 3. 12 Date: 2005/10/5. 1 2 1. 1.1.. maxima

More information

明解Java入門編

明解Java入門編 1 Fig.1-1 4 Fig.1-1 1-1 1 Table 1-1 Ease of Development 1-1 Table 1-1 Java Development Kit 1 Java List 1-1 List 1-1 Chap01/Hello.java // class Hello { Java System.out.println("Java"); System.out.println("");

More information

Effective Android NDK Advanced Core Engineer

Effective Android NDK Advanced Core Engineer Effective Android NDK Advanced Core Engineer Effective Android NDK Effective Android NDK NDK NDK NDK JNI Effective Android NDK native java native NDK NDK NDK C, C++ native toolset Android java native NDK

More information

A B C A B C X Y Z

A B C A B C X Y Z Argonauta 8: 27-37 (2003) 1 ANOVA, analysis of variance t 1980 90 ANOVA ANOVA Underwood, 1997 ANOVA ANOVA ANOVA 1975 Sokal & Rohlf 1981 1990 Underwood 1997 1997 Zar 1999 1-way ANOVA 2-way, 3-way, ANOVA,

More information

Microsoft MoneyMicrosoft Corporation

Microsoft MoneyMicrosoft Corporation 1 1 2 3 3 1 1 1 3 4 5 1 2 1 113 10 3 11 110200 11 4 10 5 31 Microsoft MoneyMicrosoft Corporation 1 1 6 7 6 6 0 23 4 35 3 1 2 3 1 4 5 6 7 0 2 1 2 2 3 Web 1 2 Pay-easy 1 3 2 1 2 3 3 NHK 4 Pay- easy 511 11

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

( ) ( ) ? 16? Book Review [ ] ( ) 337 () Book Review [ ] ( ) ( ) -2-

( ) ( ) ? 16? Book Review [ ] ( ) 337 () Book Review [ ] ( ) ( ) -2- 15 105 337 47 23 Book Review [ ] 346 55 Book Review [ ] 338 (13) UP38(10) (12) UP38() (11) UP38() (10) UP38()? 41-1- ( ) ( ) 118 195 49 195 195? 16? 41 14 104 Book Review [ ] ( ) 337 () 337 25 49 46 Book

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) + x * x + x x (4) * *

I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) + x * x + x x (4) * * 2015 2015 07 30 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) +

More information

Keysight Technologies オシロスコープ評価の基礎

Keysight Technologies オシロスコープ評価の基礎 Keysight Technologies Application Note 1........................... 2........................... 3............................. 3................................. 4.......... 5................... 6............

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

Phase field法を用いた材料組織形成過程の計算機シミュレ-ション

Phase field法を用いた材料組織形成過程の計算機シミュレ-ション Cahn-Hilliard Cahn-Hilliard 4 Cahn-Hilliard 5 x F (x F v F µ x (- µ v (- v M F M µ (- M F J v (- J v M µ (- Fik (-4 (- (-5 J D D µ M (-4 (-5 µ µ + RT ln a γ a γ (-5 (-6 D D * (ln γ * (ln γ D D +, D D +

More information

untitled

untitled THE NEW BMW 6 SERIES GRAN TURISMO. ORIGINAL BMW ACCESSORIES. Alloy wheels BMW Alloy wheels 225 mm 45 R R 17 W 8 J 17 225/45 R17 91W BMW BMW BMW 4 4 4 4 1 11 4 BMW BMW BMW BMW M Performance 650M 245/35R21Y275/30R21Y

More information

untitled

untitled 慣性運動計測機器 クロ ス ボ ー株 式 会 社 Crossbow Japan Ltd. MEMS 3 1 X Y Z 3 RS-232 Windows Gyro-View Nav-View GPS NAV420 3 AHRS400 VG400 6 IMU400 (AHRS) TEL: 06-6489-5922 FAX: 06-6489-5910 E-MAIL: sales@xbow.jp WEB:

More information

INR-HG5579a_Netshut_Guide_Linux-Solaris_.doc

INR-HG5579a_Netshut_Guide_Linux-Solaris_.doc ( ) ( ) () 1 Netshut...1 1.1....1 1.1.1....1 1.1.2. OS...1 1.2....2 2...2 2.1....2 2.2. Linux(RPM )...3 2.3. Solaris(PKG )...4 3 Netshut...7 3.1....7 3.2....8 3.3. Netshut...9 3.4. Syslog...10 3.4.1....11

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

05松山巌様.indd

05松山巌様.indd 2011 pp. 65 96 2002 2 2012 1 18 65 2011 1 5 1 2 3 4 5 2002 9 1 2 3 4 5 1 2 66 3 4 5 5 1 4 1 4 1 2 3 4 5 6 5 1 8 7 5 1 4 67 2011 21 4 3 1 7 1 1 1 1 2 2 3 3 4 2 2 / 3 68 1 1 1 2 2 2 32 3 3 4 4 2 /fa/ 2/f/

More information

hiroko_city_paper17_final.dvi

hiroko_city_paper17_final.dvi Effects of Height Restriction and Relaxation by Sy Factor Focusing on Digestion Floor Area Ratio and Building Height Hiroo Watanabe, Yudai Honma, Kentaro Honma and Kotaro Imai In this paper, we evaluate

More information