Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7 Q Q u Q y δ δ δ

8 σ σ σ σ max < σ a σ σ

9 δ δ δ <

10

11

12

13

14

15 σ

16 etc. or

17

18

19

20

21

Microsoft Word - .....J.^...O.|Word.i10...j.doc

Microsoft Word - .....J.^...O.|Word.i10...j.doc P 1. 2. R H C H, etc. R' n R' R C R'' R R H R R' R C C R R C R' R C R' R C C R 1-1 1-2 3. 1-3 1-4 4. 5. 1-5 5. 1-6 6. 10 1-7 7. 1-8 8. 2-1 2-2 2-3 9. 2-4 2-5 2-6 2-7 10. 2-8 10. 2-9 10. 2-10 10. 11. C

More information

untitled

untitled 1 2 1 1 2 3 1 2 1 2 4 0,76 4 5 0,1 1970 1974 1993 6 7 8 9 4 1920 10 1960 1971 ( ) IC 11 1980 1990 1992 1987 0,269 1996 0,023 2001 2002 1996 1996 1 98 27 70 1 3 7 12 2003 63 2 13 3 5 1 13 5 14 2 14 2 14

More information

70 3 70 70 70 70 3 70 70 300 3 5

70 3 70 70 70 70 3 70 70 300 3 5 70 3 2611 25920 70 3 70 70 70 70 3 70 70 300 3 5 70 1 1 2 2 MAX 3 1 1 2 2 MAX 3 25 27 30 50 70 1 2 3 1 70 3 P oint 300 P oint 20 30 40 50 3 2 1 1 14 15 10 11 8 5 5 5 5 95.2 68.7 95.7 94.0 97.7 P oint

More information

<5461726F2D3137944E8AEE967B95FB906A8DC58F492E6A7464>

<5461726F2D3137944E8AEE967B95FB906A8DC58F492E6A7464> 187 188 189 30 4 1 60 190 17 191 18 5 15 192 etc. 193 195 196 ( ) HP 197 198 199 200 201 202 203 , 1 -- NPO 204 205 43 11 40 207 m 208 m 209 4 210 211 213 214 215 216 217 218 219 220 1 221 233

More information

2

2 1 6 11 17 33 40 46 50 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 etc, 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Agricultural Society 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

More information

1 ETC - 1 -

1 ETC - 1 - ******** ******** - 0 - 1 ETC - 1 - ( ) ( ) ( )( )31 ( ) ( ) - 2 - - 3 - MENU MENU Enter - 4 - 1 4 A 1 C D E J K L M - 5 - A C 1 ( ) ( ) - 6 - 1 3 A 1 C D E J K L M 1 ( ) ( ) - 7 - 1 1 1 1 1 2 1 1 2 2

More information

アナウンスマニュアル

アナウンスマニュアル (1). (2). a. b. c. a. c. c. (3). 1 ( ) ( ) 2 (1). (2). (3). 3 () """" 4 ( ) ( ) ( ) ( ) 5 ( ) 6 () () () () () () () () () () () () () () () () () () () 7 () () () () () () () () () () () () () () () ()

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

橡ボーダーライン.PDF

橡ボーダーライン.PDF 1 ( ) ( ) 2 3 4 ( ) 5 6 7 8 9 10 11 12 13 14 ( ) 15 16 17 18 19 20 ( ) 21 22 23 24 ( ) 25 26 27 28 29 30 ( ) 31 To be or not to be 32 33 34 35 36 37 38 ( ) 39 40 41 42 43 44 45 46 47 48 ( ) 49 50 51 52

More information

210-0004 TEL 200-3298,3300 FAX 222-1442 14 ( ) 14 ( ) 7 ( ) 16 ( ) 16 ( ) 23 ( ) (%) 1 ( ) 1 ( ) 2 ( ) 7 ( ) 7 ( ) 22 ( ) 8 ( ) 22 ( ) 30 ( ) or 31( )

210-0004 TEL 200-3298,3300 FAX 222-1442 14 ( ) 14 ( ) 7 ( ) 16 ( ) 16 ( ) 23 ( ) (%) 1 ( ) 1 ( ) 2 ( ) 7 ( ) 7 ( ) 22 ( ) 8 ( ) 22 ( ) 30 ( ) or 31( ) 210-0004 TEL 200-3298,3300 FAX 222-1442 10:00 14:00 210-0004 TEL 200-3298,3300 FAX 222-1442 14 ( ) 14 ( ) 7 ( ) 16 ( ) 16 ( ) 23 ( ) (%) 1 ( ) 1 ( ) 2 ( ) 7 ( ) 7 ( ) 22 ( ) 8 ( ) 22 ( ) 30 ( ) or 31(

More information

橡Taro9-生徒の活動.PDF

橡Taro9-生徒の活動.PDF 3 1 4 1 20 30 2 2 3-1- 1 2-2- -3- 18 1200 1 4-4- -5- 15 5 25 5-6- 1 4 2 1 10 20 2 3-7- 1 2 3 150 431 338-8- 2 3 100 4 5 6 7 1-9- 1291-10 - -11 - 10 1 35 2 3 1866 68 4 1871 1873 5 6-12 - 1 2 3 4 1 4-13

More information

May Copyright 2016 HIROSE ELECTRIC CO., LTD. All Rights Reserved w

May Copyright 2016 HIROSE ELECTRIC CO., LTD. All Rights Reserved w 2014.9w FX8-120 P - SV 192 1 2 3 1 2 3 4 5 6 6 B 4 5 6 B 0.6±0.1 B +0.05 _0.2 C +0.05 _0.2 D±0.2 6.5 _0.3 0 5.1±0.3 2.45±0.25 (0.4) (0.75) (Ø0.9) t0.2±0.03 w0.25±0.03 (Ø0.6) 2-(C0.2) (1.5) E±0.1 FX8-60P-SV(92)

More information

[FX8/FX8C]シリーズカタログ

[FX8/FX8C]シリーズカタログ 2018.6 FX8-120 P - SV 192 1 2 3 1 2 3 4 5 6 6 B 4 5 6 B 0.6±0.1 B +0.05 _0.2 C +0.05 _0.2 D±0.2 6.5 _0.3 0 5.1±0.3 2.45±0.25 (0.4) (0.75) (Ø0.9) t0.2±0.03 w0.25±0.03 (Ø0.6) 2-(C0.2) (1.5) E±0.1 FX8-60P-SV(**)

More information

*2015カタログ_ブック.indb

*2015カタログ_ブック.indb A-35 A-36 A-37 A-38-40 1600-20 0 20 40 60 80 100 1600 1000 600 400 200 100 60 40 20 VG 22 VG 32 VG 46 VG 68 VG 100 36 16 opt 10 5 5-40 -25-10 0 10 30 50 70 90 115 t min = -40 C t max = +115 C 0.5 0.4 0.3

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ http://www.math.sci.hokudai.ac.jp/~yano/biseki2_2014/ 2014 II ( : ) 紀元前 3000 年 紀元前 300 年 17 世紀 18 世紀 19 世紀 積分 古代エジプト 古代ギリシャ積分法の起源 微分 フェルマー デカルト 微分積分学の黎明期 ニュートンライプニッツ コーシー 微分積分学の誕 厳密化と発展 リーマン : : ( 287?

More information

1 2 3 4 10 5 30 87 50 20 3 7 2 2 6 3 70 7 5 10 20 20 30 14 5 1,000 24 112 2 3 1 8 110 9 JR 10 110 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 25 30 31 32 25 A 33 B C D E F G PR PR or 34 35

More information

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27, / (1) (2) (3) [email protected] (4) (0) (10) 11 (10) (a) (b) (c) (5) - - 11160939-11160939- - 1 2 Part 1. 1. 1. A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44,

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

1

1 1 2 3 4 5 0% 20% 40% 60% 80% 100% 6 7 8 0% 20% 40% 60% 80% 100% 9 0% 20% 40% 60% 80% 100% 10 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2529 (n=17) 3034 35 (n=21) (n=17) 2529 (n=19) 3034 35 (n=34) (n=64)

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

2011 2012 4 8 C D! A B

2011 2012 4 8 C D! A B 2011 2012 4 8 C D! A B C D 2013 2014 5/ 6 7 9 11/ 12 1 3 5/6 7 9 11/12 1 3 5 6 7 1971 2003118 9 196338) 7651) 2006 1 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 The Women of Lockerbie 19881221 16243

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

離散数理工学 第 2回 数え上げの基礎:漸化式の立て方

離散数理工学 第 2回  数え上げの基礎:漸化式の立て方 2 [email protected] 2015 10 20 2015 10 18 15:29 ( ) (2) 2015 10 20 1 / 45 ( ) 1 (10/6) ( ) (10/13) 2 (10/20) 3 ( ) (10/27) (11/3) 4 ( ) (11/10) 5 (11/17) 6 (11/24) 7 (12/1) 8 (12/8) ( ) (2) 2015 10 20

More information

1.... 1 1.1.... 1 1.2.... 2 1.3.... 3 2.... 5 2.1.... 6 2.1.1.... 6 2.1.2....11 2.2.... 12 2.2.1.... 12 2.2.2.... 17 2.3.... 19 2.3.1.... 19 2.3.2.... 32 2.3.3.... 38 2.4.... 39 2.4.1.... 39 2.4.2....

More information

16 4 1 2003 JASS5 1 16 4 1 2 16 4 1 1999 90 90 JASS5RC 180 135 90 RC -1 (D) JASS5 L2 90 2/3 2030-1 JASS5 JASS5 JASS5 JASS5 JASS5 JASS5 90 JASS5 RC RC JASS5 JASS5 JASS5 190 RC JASS5 2 JASS5 (L22/3) 3 (2)

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 3Q 3Q 3Q 3Q 7:00 014 7:30) 051 7:00) 20051 2005/ 051 9 20053 PS2&GC 2 2 2Max Heart 2 DVD 26 14,000 BOX BOX 15,000 26 5,000 DVD \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 20052

More information

(1) (kn/m 3 )

(1) (kn/m 3 ) 1 1 1.1 1.1.1 (1) 1.1 1.2 1.1 (kn/m 3 ) 77 71 24.5 23 21 8.0 22.5 2 1 1.2 N/m 2 2 m 3 m 2000 2200 2500 3000 (2) 1 A B B 1.3 1.5 1.1 T cm 1.1 3 1.3 L m L 4 L > 4 1.0 L 32 + 7 8 1.2 T 4 1 2 5.0 kn/m 2 3.

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup inf (ε-δ 4) 2018 1 9 ε-δ,,,, sup inf,,,,,, 1 1 2 3 3 4 4 6 5 7 6 10 6.1............................................. 11 6.2............................... 13 1 R R 5 4 3 2 1 0 1 2 3 4 5 π( R) 2 1 0

More information