π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

Size: px
Start display at page:

Download "π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1"

Transcription

1 sup inf (ε-δ 4) ε-δ,,,, sup inf,,,,,, R R π( R) π 1

2 π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1 sup A, inf A sup[ 1, 1] = sup( 1, 1) = 1, inf[ 1, 1] = inf( 1, 1) = 1 sup inf,, (, 1] = {x R x 1} (, 1) = {x R x < 1} , (, 1] (, 1) ,,, R,,,, R,, R (, 2 ) ( ). R 2

3 1.2 ( ). a > 0, b > 0 a < Nb N (Q R ). ε > 0, a a q < ε q 1.4. lim 1 n = 0, lim n = +, lim 1 2 n = 0 2 R A, i) M A ii) a A, a M M A, i) m A ii) a A, m a m A ii) M < x x A ii) ε > 0 M + ε A ii) ii) ε > 0 m ε A, i) A,, *1., A,, max A, min A *1 M M M M M, M M M M = M 3

4 A A = {a 1, a 2, a 3,, a n }, M = a 1, M < a k M = a k k = 2, 3,, n, M A, 2.1. R,,,,, A = (, 1] = {x R x 1} A = ( 1, 1] = {x R 1 < x 1} 1 1 A, m a < m a A *2 ii) m, A m, m > 1, 1 < a < m a A *3, m 1, m A A, [ 1, ) = {x R 1 x} [ 1, 1) = {x R 1 x < 1}, R ( 1, 1) = {x R 1 < x < 1} 2.1. A = [ 1, 0) (1, 2], 2.2. B = ( 2, 1] [ 1, 2), 2.3. C = {0}, 1, R D f(x), f(x) A A = {f(x) R x D} A R, D f A, A 3 R A, b R, a A a b, b A (upper bound), c R, a A c a *2 *3 4

5 , c A (lower bound) c A b A = ( 1, 1) 2 A, 1 A,, *4. R, A = ( 1, 1) A,, b A, x b x a A a b x, {x R x b} A,, R A A U(A), L(A) U(A) = {b R a b, a A}, L(A) = {c R c a, a A} A U(A) L(A) A A = ( 1, 1) U(A) = [1, ), L(A) = (, 1], A [ 1, 1] [ 1, 1) ( 1, 1] L(A) 1 A 1 U(A) 3.1. R A A M, M A, m, m A 3.2. R A A U(A), L(A) R A U(A) = A, L(A) = A U(A) A A = ( 1, 1), U(A) = [1, ) A A, A,, *4 5

6 c A b c A b A, U(A) L(A), A 4, R R A U(A) A, L(A) U(A) b U(A) b,, A a a b, A, A a a b (a ) b, A a a b (a ) b, b A, U(A) ( ) 4.1. A R, A A a a b (a ) b, A A a c a (a ) c, {a n } = {a 1, a 2, a 3, } R A = {a n R n = 1, 2, 3, }, A, {a n }, A, {a n } {a n } {a n R n = 1, 2, 3, } a n = ( 1) n {a n } { 1, 1, 1, 1, }, {a n R n = 1, 2, 3, } { 1, 1}, {a n } (a n ) = (a 1, a 2, a 3, ) 6

7 5 R A, U(A), L(A) A = U(A) = L(A) = R, U(A) L(A),, A, 5.1. A R, U(A) U(A). B = U(A), C U(A) R a A( ), a 1 < a, a 1 U(A) = B, a 1 C C C B = U(A), C A, A a a c C c c A, C c a > c A a a A b B, a b, c C, b B c < a b a A {b n }, {c n } : b 1 B, c 1 C, 2 d n = (b n + c n )/2 b n+1 = { dn (d n B) b n (d n C), c n+1 = { cn (d n B) d n (d n C) (, C c n d n b n B c n+1 = c n, b n+1 = d n, C c n d n b n B c n+1 = d n, b n+1 = b n b n+1 c n+1 = (b n c n )/2 ) c 1 c 2 c n b n b 2 b 1, {b n }, {c n }, *5., b n c n = b n 1 c n 1 2 * (ε-δ 2) 7

8 , b n c n = b 1 c 1 2 n 1 n 0, {b n }, {c n }, m = lim b n = lim c n, m U(A) = B i) m U(A) ii) x < m x U(A) i) A a, {b n } a b n (n = 1, 2, 3, ),, A a a lim b n = m, m A, m U(A) ii) x < m x, lim c n = m, ε = (m x)/2 > 0 c n m < ε c n c n m *6, c n x < c n m *7., c n C c n < a A a, x < a, x A, x U(A) i), ii) m U(A), 5.2. A R, L(A) L(A). A 1 A A = { a R a A} A c( L(A)), A a c a a c, c U(A ) U(A ), U(A ) m M = m M L(A) A a a A a m = M M a *6 c n b n, c n lim b n = m *7, c n A,, x < c n < m 8

9 , M L(A) M < x x, x < M = m, x < a a A, A a A a < x A a x A x L(A) M L(A), R A( ), U(A), m A (supremum), m = sup A, L(A), M A (infimum), M = inf A, 5.1, R A( ), A sup A( R) 5.4. R A( ), A inf A( R), A = { a R a A}, inf A = sup( A) A = ( 1, 1) U(A) = [1, ) sup A = 1, L(A) = (, 1] inf A = 1,, {a n } A = {a n R n = 1, 2, 3, }, lim a n = sup A. A = {a n R n = 1, 2, 3, },, 5.3, s = sup A R lim a n = s s a n A a n s, ε > 0 s ε(< s) *8, s ε < a A a, A a = a N N, a n, N n n a = a N a n *8 s 9

10 , s ε < a n s s a n < ε, ε > 0 N n = s a n < ε N, 5.6. {a n } lim a n = s = sup A A = {a n R n = 1, 2, 3, }, lim a n = inf A 5.1. A = [ 1, 1] [ 1 ] [ 2, 1 1 ] 2 3, 1 3 6,,,,,, * 9 1.( ) 2 a > 0, b > 0 na > b n 2.( ) 3.( ) R A *9 R (i), (ii), (iii) 2 A, B : (i) R = A B (ii) A B =, A, B (iii) a A, b B a b, : A, B A, B 10

11 4.( ) 2 a, b a < b a < q < b q 5.( ) {a n } sup{a n n = 1, 2, 3, } 6.( ) n = 1, 2, 3, I n = [a n, b n ], n 1 I n I n+1, lim (b n a n ) = 0 I n = {a}, lim a n = lim b n = a 7.( ), 1, 2, 3,,,, Q R,, * 10., R * 11, 2, 3, 1 2, { 1 2 3,, 3, 3 1 2,,, 1 2, Q R, Q, 3 Q 6.1 n = 1, 2, 3, R A n, A 1, A 2,, A k A 1 A 2 A k k, A n A n A n [ 1 ] n, 1 = {0} n ( 1 ) n, 1 = {0} n *10 Q R 0011 (ε-δ 3) *11, 11

12 n = 1, 2, 3, A n = [ 1 ] n, 1 n, A n * 12, A n = {0} ( 6.1). 6.1 ( ). I n = [a n, b n ] (n = 1, 2, 3,... ) I 1 I 2 I n I n+1, (1) (2) lim (b n a n ) = 0 I n I n = {a}, a = lim a n = lim b n. a 1 a 2 a n b n b 2 b 1, {a n }, {b n } a = lim a n, b = lim b n a, b n a n b n a b, [a, b] * 13, a = sup{a n n = 1, 2, 3, }, b = inf{b n n = 1, 2, 3, }, n a n a b b n, n = 1, 2, 3, [a, b] I n *12 A n *13 a = b [a, b] = {a} = 12

13 ,, [a, b] I n, a I n a. I n, (1) I = I n I, I c, n c [a, b] [a n, b n ], a n a c b b n, 0 c a b n a n lim (b n a n ) = 0 c a > 0 ε = b a b n a n = b n a n < ε = b a n c a = 0 a = c [a, b] I = {a}, a = b, [a, b] {a} (2) lim a n = lim b n = a 6.2 {a n },, {a 2n } = {a 2, a 4, a 6, } {a n+1 } = {a 2, a 3, a 4, }., k a nk n 1 < n 2 < n 3 <, n k = 2k, n 1 = 2 < n 2 = 4 < a 3 = 6 <,, {a n } {a nk } k a 2k {a 2k } = {a 2, a 4, a 6, } N = {1, 2, 3, } * 14 N( R) 1, m m, N K,, min K K 1 = K, n 1 = min K 1, i 2 K i = K i 1 {n i 1 }, n i = min K i, K n 1 < n 2 < n 3 < *

14 , K = {n k N k = 1, 2, 3, } {n k } = {n 1, n 2, n 3, }, N K, K = {n 1, n 2, n 3, } {a n } {a nk } K,,, a n = ( 1) n {a n }, {a 2n } = {1, 1, 1, }.,, {a n }, K = {k N n ( k) a n a k } (, {( 1) n } K = {2k k = 1, 2, 3, } = {2, 4, 6, }, {n} K =, {1/( 5 n)} K = {2} ) 2 (1) K (2) K,, (1) K, K = {n k k = 1, 2, 3, } {n k }, {a nk } a n1 a n2 a n3, {a nk } (2) K n 1 = 1, K, K, n 1 = (max K) + 1 n 1 K n 1 < n 2 a n1 a n2 n 2, n 2 K n 2 < n 3 a n2 a n3 n 3, n 4, n 5, {n k },, {n k } m m + 1 K K = {n k k = 1, 2, 3, }, 14

15 6.2, * ( ).., 6.2.,,, 6.3. n a n a n = 1 5 n {a n }, K = {k N n ( k) a n a k } K = {2}, 3 ( ) ( ) ( ) ( ) 2 I ( ) *15 Bolzano Weierstrass., 15

16 2.1 max A = 2, min A = B = [ 1, 1], max B = 1, min B = max C = min C = 0 ({0} ) [ 5.1 A = 1 ] 3, 1, sup A = 1 3 3, inf A = 1 3 [ 6.1 A = 1 ] n, 1 1/k 0 1/k, 0 A n., A, A a, a 0, 0 < 1/k < a k, 1/k < a (a > 0 ) a < 1/k (a < 0 ) a [ 1/k, 1/k] = A k A k a A a = 0, A = {0} 6.2. ( 6.1 ) 6.3 {a n }, a 1 a 2, a 1 < a 2 1 K n 3 a n < a n+1 < 0 < a 2 3 K, 2 K K = {2} 16

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε

2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε 00 IA ε-n I,, 3, 4, 5, 6, 7, 8, 9 4 6 ε-n ε-n ε-n? {a } = {a } = a a {a } = ε ε N N a a < ε ε-n ε ε N a a < ε N ε ε N ε N N ε N [ > N = a a < ε] ε > 0 N N N ε N N ε N N ε a = lim a = 0 ε-n 3 ε N 0 < ε

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

² ² ² ²

² ² ² ² ² ² ² ² n=44 n =44 n=44 n=44 20.5% 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0% 60% 40% 20% 0% n=44 52.3% 27.3% 11.4% 6.8% 27.55.5 306 336.6 408 n=44 9.1% 6.8% n=44 6.8% 2.3% 31.8%

More information

1-1 - 2 3-2 - - 3 - i - 4 - ii - 5 - c - 6 - 4 1-7 - 2 1-8 - 2-9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - 3-18 - - 19 - - 20 - - 21 - - 22 - - 23 - iii i - 24 - - 25 - - 26 - 4-27 - 5

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

untitled

untitled 1 (1) (2) (3) (4) (1) (2) (3) (1) (2) (3) (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) 10 11 12 2 2520159 3 (1) (2) (3) (4) (5) (6) 103 59529 600 12 42 4 42 68 53 53 C 30 30 5 56 6 (3) (1) 7 () () (()) () ()

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

2004

2004 2008 3 20 400 1 1,222 7 1 2 3 55.8 54.8 3 35.8 6 64.0 50.5 93.5 1 1,222 1 1,428 1 1,077 6 64.0 52.5 80.5 56.6 81.5 30.2 1 2 3 7 70.5 1 65.6 2 61.3 3 51.1 1 54.0 2 49.8 3 32.0 68.8 37.0 34.3 2008 3 2 93.5

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

1 10 1113 14 1516 1719 20 21 22 2324 25 2627 i 2829 30 31 32 33 3437 38 3941 42 4344 4547 48 4950 5152 53 5455 ii 56 5758 59 6061 iii 1 2 3 4 5 6 7 8 9 10 PFI 30 20 10 PFI 11 12 13 14 15 10 11 16 (1) 17

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

06佐々木雅哉_4C.indd

06佐々木雅哉_4C.indd 3 2 3 2 4 5 56 57 3 2013 9 2012 16 19 62.2 17 2013 7 170 77 170 131 58 9 10 59 3 2 10 15 F 12 12 48 60 1 3 1 4 7 61 3 7 1 62 T C C T C C1 2 3 T C 1 C 1 T C C C T T C T C C 63 3 T 4 T C C T C C CN T C C

More information

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 2010 II 6 10.11.15/ 10.11.11 1 1 5.6 1.1 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0 log a 1 a 1 log a a a r+s log a M + log a N 1 0 a 1 a r

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

.1 1,... ( )

.1 1,... ( ) 1 δ( ε )δ 2 f(b) f(a) slope f (c) = f(b) f(a) b a a c b 1 213 3 21. 2 [e-mail] nobuo@math.kyoto-u.ac.jp, [URL] http://www.math.kyoto-u.ac.jp/ nobuo 1 .1 1,... ( ) 2.1....................................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

EV200R I II III 1 2 3 4 5 6 7 8 9 10 1 2 3 11 4 5 12 6 13 1 2 14 3 4 15 5 16 1 2 17 3 18 4 5 19 6 20 21 22 123 456 123 456 23 1 2 24 3 4 25 5 3 26 4 5 6 27 7 8 9 28 29 30 31 32 1 2 33 3 4 34 1 35 2 1

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S Riemnn-Stieltjes Polnd S. Lojsiewicz [1] An introduction to the theory of rel functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,, Riemnn-Stieltjes 1 2 2 5 3 6 4 Jordn 13 5 Riemnn-Stieltjes 15 6 Riemnn-Stieltjes

More information

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書 1... 1 2... 3 I... 3 II... 3 1.... 3 2....15 3....17 4....19 5....25 6....34 7....38 8....48 9....58 III...70 3...73 I...73 1....73 2....82 II...98 4...99 1....99 2....104 3....106 4....108 5.... 110 6....

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

23 15961615 1659 1657 14 1701 1711 1715 11 15 22 15 35 18 22 35 23 17 17 106 1.25 21 27 12 17 420,845 23 32 58.7 32 17 11.4 71.3 17.3 32 13.3 66.4 20.3 17 10,657 k 23 20 12 17 23 17 490,708 420,845 23

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ( ) 24 25 26 27 28 29 30 ( ) ( ) ( ) 31 32 ( ) ( ) 33 34 35 36 37 38 39 40 41 42 43 44 ) i ii i ii 45 46 47 2 48 49 50 51 52 53 54 55 56 57 58

More information

untitled

untitled i ii (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (2) (3) (1) (2) (3) (1) (1) (1) (1) (2) (1) (3) (1) (2) (1) (3) (1) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3)

More information

平成18年度「商品先物取引に関する実態調査」報告書

平成18年度「商品先物取引に関する実態調査」報告書 ... 1.... 5-1.... 6-2.... 9-3.... 10-4.... 12-5.... 13-6.... 15-7.... 16-8.... 17-9.... 20-10.... 22-11.... 24-12.... 27-13... 29-14.... 32-15... 37-16.... 39-17.... 41-18... 43-19... 45.... 49-1... 50-2...

More information

(個別のテーマ) 薬剤に関連した医療事故

(個別のテーマ) 薬剤に関連した医療事故 - 67 - III - 68 - - 69 - III - 70 - - 71 - III - 72 - - 73 - III - 74 - - 75 - III - 76 - - 77 - III - 78 - - 79 - III - 80 - - 81 - III - 82 - - 83 - III - 84 - - 85 - - 86 - III - 87 - III - 88 - - 89

More information

(個別のテーマ) 放射線検査に関連した医療事故

(個別のテーマ) 放射線検査に関連した医療事故 - 131 - III - 132 - - 133 - III - 134 - - 135 - III - 136 - - 137 - III - 138 - - 139 - III - 140 - - 141 - III - 142 - - 143 - III - 144 - - 145 - III - 146 - - 147 - III - 148 - - 149 - III - 150 - -

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

無印良品のスキンケア

無印良品のスキンケア 2 3 4 5 P.22 P.10 P.18 P.14 P.24 Na 6 7 P.10 P.22 P.14 P.18 P.24 8 9 1701172 1,400 1701189 1,000 1081267 1,600 1701257 2,600 1125923 450 1081250 1,800 1125916 650 1081144 1,800 1081229 1,500 Na 1701240

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

16 16 16 1 16 2 16 3 24 4 24 5 25 6 33 7 33 33 1 33 2 34 3 34 34 34 34 34 34 4 34-1 - 5 34 34 34 1 34 34 35 36 36 2 38 38 41 46 47 48 1 48 48 48-2 - 49 50 51 2 52 52 53 53 1 54 2 54 54 54 56 57 57 58 59

More information

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c;

I = [a, b] R γ : I C γ(a) = γ(b) z C \ γ(i) 1(4) γ z winding number index Ind γ (z) = φ(b, z) φ(a, z) φ 1(1) (i)(ii) 1 1 c C \ {0} B(c; c ) L c z B(c; 21 1 http://www.ozawa.phys.waseda.ac.jp/index2.html ( ) 1. I = [a, b] R γ : I C γ γ(i) z 0 C \ γ(i) (1) ε > 0 φ : I B(z 0 ; ε) C (i) B(z 0 ; ε) γ(i) = (ii) (t, z) I B(z 0 ; ε) exp(φ(t, z)) = γ(t) z (2)

More information

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ

ÄêÀÑʬ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ http://www.math.sci.hokudai.ac.jp/~yano/biseki2_2014/ 2014 II ( : ) 紀元前 3000 年 紀元前 300 年 17 世紀 18 世紀 19 世紀 積分 古代エジプト 古代ギリシャ積分法の起源 微分 フェルマー デカルト 微分積分学の黎明期 ニュートンライプニッツ コーシー 微分積分学の誕 厳密化と発展 リーマン : : ( 287?

More information

II ( : )

II ( : ) http://www.math.sci.hokudai.ac.jp/~yano/biseki2_2015/ 2015 II ( : ) f(x) : [a, b] F(x) : F (x) = f(x) ( ) F(x) F(b) F(a) f(x) b a f(x)dx = [ F(x) ] b = F(b) F(a) a f(x) x = a, x = b x S 紀元前 3000 年 紀元前

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

31 gh gw

31 gh gw 30 31 gh gw 32 33 1406 1421 640 0 (mm) (mm) MAX1513 MIN349 MIN280 MAX900 gh gw 34 gh gh gw gw gh gh gw gw gh gh gw gw 35 175 176 177 178 179 180 181 195 196 197 198 202 203 2 1 L L L2 L2 L2 L 2 2 1 L L

More information

技能継承に関するアンケートの結果概要

技能継承に関するアンケートの結果概要 I 1 1 1 1 1 1 2 1 3 1 II 2 1 2 2 2 3 2007 2 4 3 III 4 1 4 4 5 6 2 7 7 8 9 3 10 _10 11 _12 _13 _14 15 4 2007 16 2007 16 17 2007 18 5 19 19 I 2007 1 2005 6 21 8 3 3000 2 292 292 9.7 3 100 1 II 1 86 2 OJT

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information