|
|
|
- えりか はかまや
- 7 years ago
- Views:
Transcription
1 JANTI-SANE-03
2
3 WG
4 km 16km23km A, As , Ss Ss S 1-4,
5 30km 10km Google ZENRIN 1-1 As 1 A 1 B C *1:
6
7 Ss 1-4 6
8 H21. H21.6/19 Ss 1-5 7
9
10 2.1 AS AS ASME 2-1
11 AS ASME SCC JSME S NA Sy SuKIC
12 WG 6 2-3
13 2-4
14 2-5
15 3.1 WG
16 (JEAC4111) (JEAC4209) JIS JEC JEM JEAC JEAG4803 JEAG
17 (1) a. b. c. 3-3
18 (2) VT-3 JIS Z 3090 NDIS 3414 NDIS 3415 VT-2 JEAC4803 (3) NDIS 3413 JIS Z 2305 NDIS JIS Z (4) 3-4
19 3.2.7 WG (1) VT-1 (2) a. VT-1 b. c. (3) 3-5
20 (4) (5) 3-6
21 3-7
22 A 3-8
23 B C 3.4 WG 3 3-9
24 WG 3 WG WG 3-10
25
26 Ss
27 H21 Sm
28
29
30
31 (JEAG ) (1) (2) (3) (1) (2) (3) JEAC2008Draft, 2007ASME Sec. (,,)(H8H10
32 ) NUPEC (H10H15 ) EPRI/NRC Piping and Fitting Dynamic Reliability Program( ) FBR U92022,U94012,U95017(H4H7 ) i) ii) (P-) NUPEC H15 ii)i) 10 Ds S PFDRPNupec Ph.2 PD0 = B1 2t + B S 2 M Z ( ) ( ) 6Sm Ds Cs Ds 0.7
33
34
35
36 1 39 pp p
37
38
39 (1) (SUS316NG)
40 (2) (SFVQ1A) (3) pre/f0.2 (4) (SUS316NG)(SFVQ1A) (5) SUS316L 10% 20% SUS304TPSTS480STPT410 SFVC2BSS400 UFpre0.2 SUS316NG STS410SFVQ1A(300) LCF a kN L/C ε Taxis
41 d ε = Taxis 2 ln ( ) d 0 d 0 d ε Taxis b (300) (DFC) UFpre 0.2 UF pre = N / N f0 UF post = Nf / Nf0 ( N Nf Nf0 SUS316NGSFVQ1ASTS410 ( 300) UFpre0.2 DFC (UFpre)(UFUFpre UFpost) SUS316NGSFVQ1A STS410 ( 300) UF 1 (300) UF c SUS316NGSTS410SFVQ1A (300) (UF)
42
43 (a) R.T. (b) (SUS316NG)
44 (a) R.T. (b) (SFVQ1A)
45 (a) R.T. (b) (STS410)
46 (SUS316NG) (SFVQ1A).
47 (STS410) a ε Taxis ( ) (a) Case (b) Case (c) Case (d) Case b ε Nf SUS316NGSFVQ1ASTS410 Case 60 Case Torii 13
48 UF UF UFeq,1 = Nf / Nf0 + Dd ( ) Dd = εf' / εf0 ( Nf Nf0 0 εf' εf0 UFeq, SUS316NG SFVQ1ASTS410 UFeq,1 UF 1 c SUS316NGSTS410SFVQ1A φ16 R40 φ10 M20 P1.0 (4.8) (4.8) (mm)
49 ε ε(=2ε a ) ε ε 1 (=2ε a,1 ) dε m /dn ε 2 (=2ε a,2 ) dε m /dn N f N N 0 N (a) Case(b) Case ε ε 1 (=2ε a,1 ) ε ε 2 (=2ε a,2 ) dε m /dn ε(=2ε a ) N 0 N N (c) Case(d) Case ε SUS316NG
50 ε SFVQ1A ε STS410
51 ε (UFeq,1=Nf/Nf0+Dd) (SUS316NG)(SFVQ1A) STS410 (a) (300) (300) 0.2 (b)
52 (1) BWR (2) (3) A Vol. 72No pp (4) SUS316 A Vol. 73No pp (5) GCF (6) (7) Ogawa, et. al. Investigation of effect of Pre-Strain on Very High-Cycle Fatigue Strength of Austenitic Stainless Steels, Proceedings of the 16th Int. Conf. on Nuclear Engineering ICONE (2008 May) (8) Vol pp (9) (10) (11) Namaizawa, J., Ueno, K., Ishikawa, A., Asada, Y., Life Prediction Technique for Ratcheting Fatigue, ASME PVP-Vol.266, (1993), 3. (12),,,,,, 316FR, 2004 (1), No.04-1, (2004). (13) Torii, H., Takagi, Y., Tanaka, Y., Ogawa, T. and Komotori, J., Effect of Cumulative Pre-Strain on Low Cycle Fatigue Life of Stainless Steel, 1st Japan-China Joint Symposium on Fatigue of Engineering Materials and Structures, (2008).
53
54
55
56 JEAC4601 発生応力 (MPa) 許容応力(MPa) 図 4.4-3a 63 設計内圧負荷時の Mises 応力 内面 100 図 4.4-3b 設計内圧負荷時の Mises 応力 外面 4-32
57
58 4.4-
59
60 GL RCCV RPV
61 % ,000 t 116,000 t 76,600 t 7,300 t 5,300 t 2,000 t
62
63
64
65
66
67
68
69
70
71
72
73
74 τ cr = 0.31 σb ( 0.31 σb σv ) +
75
76
77
78
79 F F F F K 1 A c F c K1 Ac Fc
80
81
82
83
84
85 σx σy σx σy τ
86 RPV RPV Ss5 RPV RPV RPV RPV RPV RPV RPV 0.57
87 (a) NS (b) EW
88 RPV RPV
89 RPV
90
91 σx σy σx σy τ
92 RPV RPV (a) (b) Ss-1 (c) Ss-2 (d) Ss-3 (e) Ss-4 (f) Ss NS 5-34
93 (a) (b) Ss-1 (c) Ss-2 (d) Ss-3 (e) Ss-4 (f) Ss EW 5-35
94 (a) (b) Ss-1 (c) Ss-2 (d) Ss-3 (e) Ss-4 (f) Ss NS 5-36
95 (a) (b) Ss-1 (c) Ss-2 (d) Ss-3 (e) Ss-4 (f) Ss EW 5-37
96 (1) 55 7 (2) JEAG (3)
97 19 10 (4) JNES/SSD (5) ANSI/ANS , Nuclear Plant Response to an Earthquake, May, 2002 (6) ANSI/ANS , Criteria for the Handling and Initial Evaluation of Records from Nuclear Power Plant Seismic Instrumentation, April 2003 (7) RG1.166, Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator Post earthquake Actions, USNRC, Mar (8) RG1.167, Restart of a Nuclear Power Plant Shut Down by a Seismic Event, USNRC, Mar (9) EPRI NP-6695, Guidelines for Nuclear Plant Response to an Earthquake, EPRI, Dec (10) IAEA Safety Report, Pre-Earthquake Planning and Post-Earthquake Actions for Existing Nuclear Power PlantsDRAFT Rev (11) IAEA Safety Standards, Evaluation of Seismic Safety for Existing Nuclear Installations, Safety Guide No. NS-G-2.13, (1) (1) () 2.2 S S S JEAG (2) JEAC Leroy Perry EPRI (9) NRC
98 (7),(8) ANSI/ANS (5),(6) IAEA EBPExtra-Budgetary Project IAEA
99 % 24 1 Damage Indicating ParametersCumulative Absolute Velocity
100 ()
101 30km 10km NPS : 100km NPS Google ZENRIN : : 10km NPS 30km 1 ( 2005) (cm/s) (s) [] (2006) 2 6-6
102 12 [] (20083) km 30km Gal(cm/s 2 ), ( ) Google ZENRIN 4 6-7
103
104
105 ,
106 A B C D () 6-11
107 C ) D D 6-12
108 1 2 3 A B C D
109 4 5 A B C D A B C D A A
110 B B C C B D D B
111 3 Ss Sd 4 8 ~
112
113
114 () 6
115
116 8
117
118
119
120 Y
121 S 48 3a 6b6c7b 7c
122 C S S C
123 S S ()
124 76 C 9
125 C D 9
126 PSA SMA(Seismic Margin Assessment) ) S B C S
127 () D
128
129 . (1) (2) 300 (3)
130 (4).2
131
132
133 WG WG WG WG WG WG WG WG WG WG WG WG WG WG
134
SCCに対する保安院の取組み
( ) 75 1 1 : SCC 2 ( 16) NISA 3 PWR ( 17616NISA ) 4 BWR 5 BWR 6 7 ( 16) 8 2 (1) Stress Corrosion Cracking (IGSCC: Intergranular Stress Corrosion Cracking) Transgranular Stress Corrosion Cracking) Irradiation
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
PWRPressurized Water Reactor BWRBoiling Water Reactor 2 1.3.1 1.3.2 PWR 1 2 2 BWR 6.1.1 [ ] 2002-2003 6.1.2 1 2 3 http://www.atom.meti.go.jp/ 4 6.1.3 1 4 Defense in Depth http://www.atom.meti.go.jp/ 1
untitled
22112 Ss Ss 1 Ss S S BC 2 S1/2 S 1 1 3 S2/2 S 2 2 4 Ss Ss 1 1 Ss Ss 5 JEAG46011984JEAG4601 1987JEAG46011991 JSME S NC12005 JEAG4601-1991 6 NO NO YES YES 7 Ss Ss A1 A2 Ss Ss 8 B1 Ss 9 10 4.87 4.87 0.29
Key Words: probabilisic scenario earthquake, active fault data, Great Hanshin earthquake, low frequency-high impact earthquake motion, seismic hazard map 3) Cornell, C. A.: Engineering Seismic
The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap
The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collapse and LBB behavior of statically indeterminate piping
電子部品はんだ接合部の熱疲労寿命解析
43 Evaluation for Thermal Fatigue Life of Solder Joints in Electronic Components Haruhiko Yamada, Kazuyoshi Ogawa 2 63Sn- 37Pb 95Pb-5Sn Si Cu Si 63Sn-37Pb Since automotive electronic components are used
EL 9.5m EL -4.5m ,13Cr, 27 (1978) 292 P.64 B ,, ,, 40 (1991) 453 P.58 2-65SUS316 P.31 H.Ishii, et al, The Effects of Heat Treatments on Corrosion Fatigue Properties of 13%
生活排水処理施設整備計画策定マニュアル
1. 1 1 1 1 1 2 2 2. 2 2 1 2 2 2 6 3. 8 3 1 8 3 2 9 4. 9 4 1 10 4 2 10 4 3 11 4 4 12 4 5 13 5. 13 1 14 2 15 3 17 4 18 5 20 21 23 25 27 29 30 33 35 1. 1 1 12 12 5 6 4 7 1 1 2 2. 2 1 1 3 3 2 12 10 11 82 13
JIS Z803: (substitution method) 3 LCR LCR GPIB
LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter
7章 構造物の応答値の算定
(1) 2 (2) 5.4 5.8.4 2 5.2 (3) 1.8 1) 36 2) PS 3) N N PS 37 10 20m N G hg h PS N (1) G h G/G 0 h 3 1) G 0 PS PS 38 N V s G 0 40% Gh 1 S 0.11% G/G 0 h G/G 0 h H-D 2),3) R-O 4) 5),6),7) τ G 0 γ = 0 r 1 (
NETES No.CG V
1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4
= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds
P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33
: : P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33 27 26 10 26 10 25 10 0.7% 331 % 26 10 25 10 287,018 280,446 6,572 30,236 32,708 2,472 317,254 313,154 4,100 172,724 168,173 4,551 6,420 6,579 159 179,144
Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test
(J. Soc. Mat. Sci., Japan), Vol. 52, No. 11, pp. 1351-1356, Nov. 2003 Fatigue Life Prediction of Coiled Tubing by Takanori KATO*, Miyuki YAMAMOTO*, Isao SAWAGUCHI** and Tetsuo YONEZAWA*** Coiled tubings,
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
Template For The Preparation Of Papers For On-Line Publishing In JSME
A Cnstitutive Equatin f Strain Rate Deendency fr Varius Cyclic Ladings Akihir HOJO, Jianxun SHEN, Akiyshi CHATANI and Hirshi TACHIYA * * * * Det. f Mechanical Systems Engineering, Kanazawa University,
2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5
1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888
経済論集 46‐2(よこ)(P)☆/2.三崎
1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.
untitled
38 39 2 3 11 360 14 15 3 6 7 8 9 14 9 11 3 10 6 20 20 30 20 20 30 40 40 30 JIS() 40 (SI) 5060 50 40 54 12 WTO/TBT () JIS ISO() 9 3 14 12 2 15 () 14 10 138 139 JWWA Q 100 2005 1 10 100 14 20 3 31 JWWA 1
SEISMIC HAZARD ESTIMATION BASED ON ACTIVE FAULT DATA AND HISTORICAL EARTHQUAKE DATA By Hiroyuki KAMEDA and Toshihiko OKUMURA A method is presented for using historical earthquake data and active fault
NewBead_no53_fix1218.indd
11 5 1 No.53 2016 January C O N T E N T S 1 2 3 1,200 3 4 NSSW SX-26NSSW YM-26 197247 1,300 21 496-0034 2-18-2 0567-28-7751 5 NSSW H-600 NSSW YM-26 NSSW YM-60C NSSW SF-1 1972 47 1,000 60 767-0033 2039-1
xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =
,, uvw,, Bernoull-Euler u v, w θ dv ( ) dw u (,, ) u( ) ω(, ) φ d d v (,, ) v( ) θ ( ) w (,, ) w( ) θ ( ) (11.1) ω φ φ dθ / dφ v v θ u w u w 11.1 θ θ θ 11. vw, (11.1) u du d v d w ε d d d u v ω γ φ w u
(1) (2)
3 3.1 3.1.1 3.1.2 (1) (2) 3.1.3 3-3.1.3.1 3.1.3.1 1 2 3.1.4 3.23.4 NATM 1980-3.1.4.1-3.1.4.2 NATM 20 1) NATM No.1235, 1983. 2) No.A-84-511984. -3.1.4.1 NATM -3.1.4.2 NATM Vp Vp 23/2882% 1983 : 0 A i X
パイプ継手 (MS ;rev_14;ja-JP;製品カタログ)
-119 1/16 1 316 S -120-122 -132 SS-2-CN -124-128 -133 316 SS 316 S/MS S -129-133 -133 316 SM S479 STM 276 SM 16 STM 453 SM S182 STM 182 STM 283 STM 108-130 -133-131 -134 SWK TM PTF Swagelok PTF Swagelok
dvipsj.8449.dvi
9 1 9 9.1 9 2 (1) 9.1 9.2 σ a = σ Y FS σ a : σ Y : σ b = M I c = M W FS : M : I : c : = σ b
main.dvi
BPF 16 2 29 4414 LP F (Low P ass F ilter) HPF(High P ass F ilter) BPF(Band P ass F ilter) ( ) BPF BPF BPF 2 Q BPF 1 BPF BPF BPF 1 8 1 BPF BPF BPF -3[dB] 5[MHz] BPF -3[dB].8[MHz] BPF i 1 1 2 BPF 4 2.1...........................
111 1 2 3 11 211 212 1 20 2 1. (1) (2) 1 3. (1) 21 (2) 213 1 (1) (2) (3) 2 3 13,14 4 5 6 7 214 [] 215 [] 22 216 1. 2. (1) (2) (3) 3. 2-1-5 217 218 1 2 3 JIS Z 8304 SUS304 4 5 6 7 23 8 syusui2002 2500m
- 2 -
- 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -
2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1
1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4
1 (1) (2)
1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)
128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds
127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
DocuPrint C5450 ユーザーズガイド
1 2 3 4 5 6 7 8 1 10 1 11 1 12 1 13 1 14 1 15 1 16 17 1 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 27 1 1 28 1 29 1 30 1 31 1 2 12 13 3 2 10 11 4 9 8 7 6 5 34 24 23 14 15 22 21 20 16 19 18 17 2 35
- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - km2 km2-7 - - 8 - - 9 - EX---------- (EW)-------- ------ (CR)--- (EN)--- (VU)-------- NT (DD)-------- - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - ( ) 150,000 -
030801調査結果速報版.PDF
15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10
V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V
I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)
【資料5-2】パブコメ(全文)修正&整理番号入り.PDF
1 1993 1984 1987 10 1 70 150 300 20 20 10 15 50 mm mm mm mm mm ------------------------------------------------------------------------- 1997 10 4. 15 4 3 4 6 3 1 1993 1984 1987 10 1 70 150 300
8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J
26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK
近畿中国四国農業研究センター研究報告 第7号
230 C B A D E 50m 558 0 1km (mg L 1 ) T N NO 2 3 N NH 4 N 2.0 0 (a) 2001 1.5 6 20 21 5 1.0 0.5 0.0 2.0 1.5 1.0 0.5 0.0 14:00 17:00 (b) 2001 7 3 4 20:00 23:00 2:00 (h) 5:00 8:00 11:00 10 0 5 10 15
地中レーダによる地下計測
2001 7 [email protected] Tel&Fax:022-217-6075 1 (Ground Penetrating radar: GPR) ( ) 2 2.1 10MHz ε r c 3 v = = 10 8 ( m/ s) (1) ε ε r r 1 f (Hz) λ (m) ε r λ = vt = v f ( m) (2) 2.2 1 1 τ (s) d(m)
<4E53534D4320B8D6B9DCD7DBBACFD1F9B1BE20C6C6BDE2BAF32E706466>
http://www.nssmc.com/ 100-807161 Tel: 03-6867-4111 P001_02_201210f 2012 NIPPON STEEL & SUMITOMO METAL CORPORATION mm T/ 40 80 120 160 200 300 400 500 1000 2000 3000 4000 5000 mm 25.4 168.3 3.050.0 1
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
