V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

Size: px
Start display at page:

Download "V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V"

Transcription

1 I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r) u r > 0, d r < 0, 0 > 0 X (H) > 0, X (T ) < 0 0 = 0 X (H) = 0, X (T ) = 0 0 < 0 X (H) < 0, X (T ) > 0,...20, X 0 = 0, 0, Γ 0 ( Γ 0 ), X = 0 S + Γ 0 (S 5) +.25( Γ 0 ) H, T, X (H) = Γ 0 ( Γ 0 ) = Γ 0 X (T ) = ( Γ 0 ) = 3 0.5Γ 0,X (H) = X (T ) X (T ) 0, X (H) > 0 X (H) 0, X (T ) > 0

2 V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V n+ (T ) (d r) u d = ( + r)v n pv n+ (H) + pv n+ (T ) = pv n+ (H) + qv n+ (T ) pv n+ (H) + pv n+ (T ) = V n+ (T ) (H) = (.2.4) 5 X 2 (HH) = 3.2, X 2 (HT ) = (HT ) = (.2.4) X 3 (HT H) = 0, X 3 (HT T ) = 6. ( 4 ). V V (H) = ( 4 ) = V (T ) = ( 4 ) = 3..5 =

3 V 3 (HHH) = , V 3 (HHT ) = 5.325, V 3 (HT H) = , V 3 (HT T ) = 3.325, V 3 (T HH) = , V 3 (T HT ) = , V 3 (T T H) = , V 3 (T T T ) = (.2.6),(.2.7) 2 (HH) = 3, 2(HT ) =, 2 (T H) = 3, 2(T T ) =, (H) = 5, (T ) = 3 30, 0 = v n (s, y) = 2 5 (v n+(2s, y + 2s) + v n+ (0.5s, y + 0.5s)). v 3 (32, 60) =, v 3 (8, 36) = 5, v 3 (8, 24) = 2, v 3 (2, 8) = 0.5, v 3 (8, 8) = 0.5, v 3 (2, 2) = v 3 (2, 9) = v 3 (0.5, 7.5) = 0, v 2 (6, 28) = 6.4, v 2 (4, 6) =, v 2 (4, 0) = 0.2, v 2 (, 7) = 0, v (8, 2) = 2.96, v (2, 6) = 0.08, v 0 = δ n (s, y) = v n+(2s, y + 2s) v n+ ( s 2, y + s 2 ) 2s 2 s V n (ω ω 2... ω n ) = + r n (ω ω 2... ω n ) p n(ω ω 2... ω n )V n+ (ω ω 2... ω n H) + q n (ω ω 2... ω n )V n+ (ω ω 2... ω n T ) p n (ω ω 2... ω n ) = + r n(ω ω 2... ω n ) d n (ω ω 2... ω n ) u n (ω ω 2... ω n ) d n (ω ω 2... ω n ) q n (ω ω 2... ω n ) = u n(ω ω 2... ω n ) r n (ω ω 2... ω n ) u n (ω ω 2... ω n ) d n (ω ω 2... ω n ),

4 (.2.7).,. p n = Sn 0 S n S n+0 S n Sn 0 S n =

5 I Ω = A A c, A A c = φ = P (Ω) = P (A) + P (A c ) P (A c ) = P (A). P ( m n=) m P (A n ) n=. P ( m+ n= ) = P ( m n=a n ) + P (A m+ ) P (( m n=a n ) A m+ ) m P ( m n=a n ) + P (A m+ ) P (A n ) + P (A m+ ) = m+ n= P (A n ). n= P (S 3 = 32) = 8, P (S 3 = 8) = 3 8, P (S 3 = 2) = 3 8, P (S 3 = 0.5) = 8 ẼS = = 5 ẼS 2 = = 25 4 ẼS 3 = =

6 P (S 3 = 32) = 8 27, P (S 3 = 8) = 2 27, P (S 3 = 2) = 6 27, P (S 3 = 0.5) = 27 ES = = 6 ES 2 = = 9 ES 3 = = E n ϕ(m n+ ) ϕ(e n M n+ ) = ϕ(m n ) Jensen, (M n ). n+ E n M n+ = E n X j = M n + E n X n+ = M n + EX n+ = M n j= (M n ). ( E n S n+ = E n e σm 2 ) n+ ( 2 ) n+ n+ = e σmn En e σx n+ e σ + e σ e σ + e σ ( 2 ) n+ ( = e σmn Ee σx n+ 2 ) n+( e σ + e σ ) = e σmn = S e σ + e σ e σ + e σ n 2 (S n ). 6

7 n 2 = n (M j+ M j ) 2 = 2 2 j=0 j=0 n n Mj+ 2 M j+ M j + n 2 j=0 = M n 2 n 2 + n n Mj 2 M j+ M j + j=0 j=0 j=0 j=0 M 2 j = M n 2 n 2 + M j (M j M j+ ) = M n 2 2 I n I n = 2 M 2 n n 2. j=0 M 2 j E n f(i n+ ) = E n f(i n + M n (M n+ M n )) = E n f(i n + M n X n+ ) h(x, y) = Ef(x + yx n+ ), E n f(i n + M n X n+ ) = h(i n, M n ). h(i n, M n ) = g(i n ). E n I n+ = I n + E n n (M n+ M n ) = I n + n E n M n+ M n = I n + n EX n+ = I n (I n ). p =

8 . E f(x 2 ) = g(x ) f, (f(2) + f(0)) = f() = g() 2. f(x) = x 2,. (). M n = ẼnM = ẼnM = M n Ẽ n V n+ ( + r) n+ = = { Vn }. (+r) n Ẽ n V n+ ( + r) n+ V n ( + r) ẼnV n+ n+ ( + r) pv V n n+(h) + qv n+ n+ (T ) = ( + r) n = Ẽn = Ẽn = = Ẽn+ V ( + r) ( + r) n Ẽn V n ( + r) n { }. (+r) n (iv) V ( + r) V ( + r) n V (+r) = V (+r) V n ( + r) = V n n ( + r), n V n n = V n, n. 8

9 p(ω ω 2 ) = + r(ω ω 2 ) d(ω ω 2 ) u(ω ω 2 ) d(ω ω 2 ), P H (HH) = 2, P H (HT ) = 2, P T (T H) = 6, P T (T T ) = 5 6 p H (HH) (H). P (HH) = 4, P (HT ) = 4, P (T H) = 2, P (T T ) = 5 2. V (H) = = 2 5 V (T ) = = 9. P (H) = P (T ) = 0.5 V 0 = = (iv) 0 = V (H) V (T ) S (H) S (T ) = (H) = V 2(HH) V 2 (HT ) S 2 (HH) S 2 (HT ) = X n+ Ẽ n ( + r) n+ = Ẽn n Y n+ S n ( + r) + X n n S n = ns n n+ ( + r) n ( + r) ẼnY n+ n+ + X n n S n ( + r) n = ns n ( + r) n+ pu + qd + X n n S n ( + r) n = X n ( + r) n 9

10 . V. (.2.6) V n., n (.2.7)., (2.8.2), (.2.4). (2.8.2) (.2.4) X n+ (ω,..., ω n, H) = n us n + ( + r)(x n n S n ) X n+ (ω,..., ω n, T ) = n ds n + ( + r)(x n n S n )..2.2 X n (ω,..., ω n ) = V n (ω,..., ω n ), n, (ω,..., ω n ). (2.8.2) X n., V n 8 V V n = Ẽn ( + r) n. Ẽ n S n+ = ( + r) n+ Ẽn ( An+ )Y n+ S n = ( + r) n+ ( A n+ (H)) pu + ( A n+ (T )) qd + r =,. S n ( + r) n+ ( A n+(h)) pu+( A n+ (T )) qd S (S K) + (K S ) + K + K S = 0 if K > S = S K if K < S 0

11 . C C n = Ẽn ( + r) n F F 0 = Ẽ0 ( + r) = Ẽ0 = Ẽn F + P = F ( + r) n n + P n S K K = S ( + r) 0 ( + r) (iv) F 0,, ( + r) (F 0 S 0 ) + S = K + S.. (v) n = 0, F 0 = 0 C 0 = F 0 + P 0 = P 0. (vi) S K F n = Ẽn ( + r) n = Ẽn S ( + r) S 0 = S ( + r) n n ( + r)ns 0, n C n = P n. (v) K = ( + r) m S m m K > ( + r) m S m F F m = Ẽm ( + r) m = ( + r) m S K Ẽ m ( + r) ( + r) m K = S m ( + r) < 0 m

12 C m = F m + P m < P m C m < P m if K > ( + r) m S m C m = P m C m > P m if K = ( + r) m S m if K < ( + r) m S m m S m K K m m K (+r) m K ( S m > ) K < ( + r) m S (+r) m m S m P m + S m K (+r) m K (+r) m = P m + F m = C m K K ( S m < ) K > ( + r) m S (+r) m m 0 K (v) m 0 Ẽ n f(s n+, Y n+ ) = Ẽnf(S n X n+, Y n + Sn + ),X n+ (H) = u, X n+ (T ) = d g(s, y) = Ef(sX n+, y + S n+ ) Ẽnf(S n+, Y n+ ) = g(s n, Y n ). (S n, Y n ). 2

13 v n (s, y) = + r pv n+(us, y + us) + qv n+ (ds, y + ds) ( y ) v (s, y) = f + n M +.n < M Ẽ n f(s n+, Y n+ ) = Ẽnf(S n+, 0) = g(s n, 0) = g(s n, Y n ).n = M Ẽ M f(s M+, Y M+ ) = ẼMf(S M+, S M+ ) = g(s M, S M ), (S n, Y n ). v n (s, y) = pv +r n+(us, y + us) + qv n+ (ds, y + ds) if n M + v M (s) = +r pv M+(us, us) + qv M+ (ds, ds) if n = M v n (s) = pv(us) + qv(ds) if n < M +r y v (s, y) = f( M ) 3

14 I (i ) Z(ω) = P (ω) P (ω) > 0, ω Ω. P ( Z > 0) = (ii ) (iii ) Ẽ = P (ω) P (ω) = P (ω) = Z P (ω) ω Ω ω Ω Ẽ Z Y = P (ω) P (ω) Y (ω) P (ω) = P (ω)y (ω) = EY ω Ω ω Ω P (Ω) = ω Ω Z(ω)P (ω) = EZ = ẼY = ω Ω Y (ω) P (ω) = ω Ω Y (ω)(ω)p (ω) = EZY P (A) = ω A P (ω) = 0, P (ω) 0, ω Ω P (ω) = 0, ω A. P (A) = ω A Z(ω)P (ω) = 0 (iv) P (A) = ω A Z(ω)P (ω) = 0, Z(ω)P (ω) 0, ω Ω 4

15 Z(ω)P (ω) = 0, ω A. Z(ω) > 0 P (ω) = 0 ω A. P (A) = 0. (v) P P P (A) = P (A c ) = 0 P (A c ) = 0 P (A) =. (vi) Z P (Z(ω ) = 3 2 ) = 3, P (Z(ω 2) = 3 2 ) = 3, P (Z(ω 3) = 0) = 3 EZ =, P (Z 0) =. P (ω 3 ) = 0 P (ω 3 ) = 3 0 P P.! (M n ). E n M n+ = E n E n+ S 3 = E n S 3 = M n (M n ). 5

16 ( 3Z3 4 ζ 3 = 5) ζ 3 (HHH) = 27 25, ζ 3(HHT ) = ζ 3 (HT H) = ζ 3 (T HH) = ζ 3 (HT T ) = ζ 3 (T HT ) = ζ 3 (T T H) = 08 25, ζ 3(T T T ) = V 0 = ω Ω ζ(ω)p (ω)v (ω), V 0 = ( ) + ( ) =.26. (iv) ( 4 ) 2Z2 ζ 2 (HT ) = ζ 2 (T H) = (HT ) = V 2 (HT ) = V 2 (T H) = ζ 2 (HT ) E 2ζ 3 V 3 (HT ) = ( 3 ζ 2 (T H) E 2ζ 3 V 3 (T H) = ) = ( ) = 0.2 Z(HH) = 9 6, Z(HT ) = 9 8, Z(T H) = 3 5, Z(T T ) = 8 4 Z (H) = E Z(H) = = 3 4 Z (T ) = E Z(T ) = = 3 2 Z 0 = E 0 Z = = 6

17 V (H) = ( ) 3 8 = 2.4 V (T ) = 8 ( ) = 8 V 0 = 25( ) ( X max Elog(X ), s.t.ẽ = X ( + r) 0 5 ) 4 0 = L = ( log(x )(ω) + λ X 0 X (ω) ) ( + r) P (ω)z(ω) ω Ω ω Ω. P (ω) X (ω) λζ (ω)p (ω) = 0 X = λζ.,λ = X 0. X 0 = X ζ. Z X 0 = E n X ( + r) X Ẽ n = X Z E ( + r) n Z n ( + r), Z X E n X = Z ( + r) n Ẽ n ( + r). X 0 = X n ζ n, n. = Z n X n ( + r) n = X nζ n. L = ( log(x )(ω) + λ X 0 X (ω) ) ( + r) P (ω)z(ω) ω Ω ω Ω 7

18 X p (ω)p (ω) λp (ω)ζ(ω) = 0. λ = Xp ζ. λ p = X 0 Eζ p p.. X = λ X p ζ p 0 ζ p = Eζ = X0( + r) Z p p EZ p p p U(x) V (x) = U(x) yx. U(x) ( I ), I(y) V (I(y)) = 0. V (x) V (I(y)) + V (I(y))(x I(y)) = V (I(y)) U(x) yx I(y). x = X, y = λz (+r) (3.6.3) U(X ) λzx ( + r) U(X ) λz ( ( + r) I λz ) ( + r). λzx X ( ) = EU(X ) E = EU(X ( + r) ) λẽ = EU(X ( + r) ) λx 0 ( ) = EU(X) λz ( E ( + r) I λz ) = EU(X ( + r) ) λx 0 ( ) (3.3.26). EU(X ) EU(X ) 8

19 . X X n = Ẽn 0 ( + r) n (0 < y ) γ y(γ x) 0 if 0 x < γ (RHS) (LHS) = U(x) y(γ x) = y(γ x) 0 if x γ (y > ) γ yx 0 (RHS) (LHS) = (U(x) yx) = + yx 0 if 0 x < γ if x γ x = X, y = λz (+r) U(X ) λzx ( + r) U(X ) λz ( ( + r) I λz ) ( + r). U(x) λzx X ( ) = P (X γ) E = P (X ( + r) γ) λẽ = P (X ( + r) γ) λx 0 ( ) = P (X λz ( γ) E ( + r) I λz ) = P (X ( + r) γ) λx 0 P (X γ) P (X γ). (iv) (3.6.4) Z ( X 0 = E ( + r) I λz ) = ( + r) M ζ m I(λζ m )p m = m= K ζ m γp m m= 9

20 . K ζ K γλ ζ K+. λ K m= ζ m p m = X 0 γ K. (v) X = I(λζ), K m K λζ m γ X (ω m ) = γ. m > K λζ m > γ X (ω m ) = 0 20

21 I! ". V P 0 = ! " V C 0 =

22 !" # $ % & #!" # V S 0 = (iv) V S 0 = < V C 0 + V P 0 = ,,.,., (T ). 0 4, X X (H) = , X (T ) = =.7 0 = = (H) (.7 8 (H)) = (H) (.7 8 (H)) = (T ) (.7 4 (T )) = (T ) (.7 4 (T )) =

23 #! (H), (T ). (H) = (T ) = 0.!" T.. (HH), (HT ),,.36. (T H),, (T T ),, (T ) =.,.. ()τ(hh) =, τ(ht ) =, τ(t H) =, τ(t T ) = (2)τ(HH) = 2, τ(ht ) =, τ(t H) =, τ(t T ) = (3)τ(HH) =, τ(ht ) = 2, τ(t H) =, τ(t T ) = (4)τ(HH) =, τ(ht ) =, τ(t H) = 2, τ(t T ) = 23

24 (5)τ(HH) =, τ(ht ) =, τ(t H) =, τ(t T ) = 2 (6)τ(HH) =, τ(ht ) =, τ(t H) = 2, τ(t T ) = 2 (7)τ(HH) =, τ(ht ) = 2, τ(t H) =, τ(t T ) = 2 (8)τ(HH) =, τ(ht ) = 2, τ(t H) = 2, τ(t T ) = (9)τ(HH) = 2, τ(ht ) =, τ(t H) =, τ(t T ) = 2 (0)τ(HH) = 2, τ(ht ) =, τ(t H) = 2, τ(t T ) = ()τ(hh) = 2, τ(ht ) = 2, τ(t H) =, τ(t T ) = (2)τ(HH) =, τ(ht ) = 2, τ(t H) = 2, τ(t T ) = 2 (3)τ(HH) = 2, τ(ht ) =, τ(t H) = 2, τ(t T ) = 2 (4)τ(HH) = 2, τ(ht ) = 2, τ(t H) =, τ(t T ) = 2 (5)τ(HH) = 2, τ(ht ) = 2, τ(t H) = 2, τ(t T ) = (6)τ(HH) = 2, τ(ht ) = 2, τ(t H) = 2, τ(t T ) = 2 (7)τ(HH) =, τ(ht ) =, τ(t H) =, τ(t T ) = (8)τ(HH) =, τ(ht ) =, τ(t H) =, τ(t T ) = 2 (9)τ(HH) =, τ(ht ) =, τ(t H) = 2, τ(t T ) = (20)τ(HH) =, τ(ht ) =, τ(t H) = 2, τ(t T ) = 2 (2)τ(HH) =, τ(ht ) =, τ(t H) =, τ(t T ) = (22)τ(HH) =, τ(ht ) = 2, τ(t H) =, τ(t T ) = (23)τ(HH) = 2, τ(ht ) =, τ(t H) =, τ(t T ) = (24)τ(HH) = 2, τ(ht ) = 2, τ(t H) =, τ(t T ) = (25)τ(HH) =, τ(ht ) =, τ(t H) =, τ(t T ) = (26)τ(HH) = 0, τ(ht ) = 0, τ(t H) = 0, τ(t T ) = 0,,3,4,5,6,7,8,2,2,22,26. ( 4 ) τgτ Ẽ {τ 2} 5 24

25 () ()0,(3)0.6,(4)0.6,(5)0.64,(6)0.8,(7)0.8,(8)0.32,(2)0.96,(2).2,(22).36,(26) (4.4.6), (22).. K S, + r Ẽ (K S ) = K + r S. K S K + r S (K S ) = rk + r < ,.,. (4.8.4). V0 EC K S 0 + ( + r) = V EP 0. τ({k S > 0}) =, τ({k S 0}) =,V EP 0 V AP 0. (4.8.5).. S K. + r Ẽ S K = S K + r 25

26 . S K + r (S K) = rk + r > r Ẽ 2 S K = S 2 K + r ( + r) 2. S 2 K (( ( + r) (S 2 2 K) = K ) 2 ) > 0 + r. l + S (l ) + r Ẽ l K ( + r) l l S (l ) S l K ( + r) l K (S ( + r) l l K) = K ( ( ) l ) > 0 + r. l.l = S 0 K ( + r).. 26

27 I Eα τ 2 = Eα τ 2 τ +τ = Eα τ 2 τ Eα τ = Eα τ 2 Eα τm = Eα P m k=0 (τ k+ τ k ) = Π m k=0 Eατ k+ τ k = Eα τ m {τ k+ τ k } k = 0 m.,. f (σ) = pe σ qe σ = 0, f (σ) > 0 e σ = (q/p) 0.5 f(σ), σ > 0, f(σ) > f(0) =. ( ) nen ( E n S n+ = e σmn e σx n+ ) ( pe σ + qe σ ) = S n = S n f(σ) f(σ) f(σ) = S 0 = ES n τ = E. lim S n τ = n ( e σmn τ ) n τ f(σ) 0 if τ = ( τ e σ f(σ)) if τ < lim E ( ) = E {τ < }e σ τ f(σ) 27

28 e σ = E ( ) τ {τ < } f(σ).σ 0 lim E = P (τ < ). (iv) α = f(σ) αpeσ + αqe σ = 0 e σ = 4α 2 pq 2αq. 2αq = E 4α 2 pq ατ.. Eα τ = 4α 2 pq 2αq (v) α Eτ α τ = ( ( 4α2 pq) 2 ) 2α 2 q( 4α 2 pq) 2 α Eτ = ( 4pq)0.5 2q( 4pq) 0.5. pe σ + qe σ = (e σ )(pe σ q) = 0 28

29 σ 0 = log(q/p). ( σ > σ 0 ) σ σ 0 e σ 0 = P (τ < ). P (τ < ) = p/q. α = f(σ) Eα τ = E {τ < }α τ + E {τ = }α τ = E {τ < }α τ = 4α 2 pq 2αq. (iv). (iv) (v) Eα τ E {τ < }τ, E {τ < }τ = ( 4pq)0.5 2q( 4pq) 0.5. Eα τ 2 = k= P (τ 2 = 2k)α 2k = k=. P (τ 2 = 2k) = (2k)! 4 k (k + )!k! ( α 2 ) 2k (2k)! (k + )!k! P (τ 2 2k) = P (M 2k = 2) + 2P (M 2k 4) = P (M 2k = 2) P (M 2k = 0) 29

30 P (τ 2 = 2k) = P (τ 2 2k) P (τ 2 2k 2) = P (M 2k 2 = 2) + P (M 2k 2 = 0) P (M 2k = 2) P (M 2k = 0) ( ) 2k 2 { (2k 2)! = 2 k!(k 2)! + (2k 2)! } ( 2k { (2k)! (k )!(k )! 2) (k + )!(k )! + (2k)! } k!k! (2k)! = 4 k (k + )!k!, m, M n = b M n = m + (m b) = 2m b.,(b m),. P (M n m, M n = b) = P (M n m, M n = 2m b) = P (M n = 2m b) = n! ( ) ( ) n b n+b + m! m!( ) n, 2 n.. n! ( ) ( ) p n b 2 +m q n+b 2 m n b n+b + m! m! 2 2 (, ) =

31 (j 0) ( s v(2s) = 4 2s, v = 4 2) s 2 c(s) = 4 s 4 (4 5 ) 5 4 s = 0.8 (j = ) v(2s) = 4 ( s ) 2s =, v = 4 s 2 2 = 3 c(s) = ( ) 2 3 = 0.4 3

32 (j 2) v(2s) = 4 2s = 2 ( s ) s, v = 4 2 s/2 = 8 s c(s) = 4 s 4 ( 5 s + 4 = 0 s) (j 0) δ(s) = 3 2 s 3 2 s = (j ) δ(s) = 2 3 (j 2) δ(s) = 6 s 3 2 s = 4 s 2 s x(s ) x(s ) = δ(s)s + ( + r)(v(s) c(s) δ(s)s) v(s ). (j 0) x(s ) = s (4 s s) = 4 s = v(s ). (j = ) x(s ) = 2 3 s ( ) = 2 3 s + 3 = s = 4 3 s = v(s ). (j 2) x(s ) = 4 s 2 s + 5 ( 4 4 s + 4 ) s s = 4s 2 s s = 2/s s = 2s 8/s s = s/2 32

33 v(s ). v(s+ ) S + Ẽ n = ( + r) + Ẽn = ( + r) n+ v(sn) (+r) n S n ( + r) = v(s n) n ( + r) n.. n Sn K K Ẽ = S ( + r) n 0 ( + r) n. n S 0.. { max s K, } + r pus + qds = max { } s K, s = s = v(s) v(s) = s. (5.4.8). (iv) v(s n ) = S n,. v(s) = s p s p = 2 5 (2s)p + 2 ( s ) p s p (2 p+2p+ 5 ) = s p > 0 2 p+2p+ 5 = 0 2(2 2p ) 5(2 p ) + 2 = (2 p 2)(2(2 p ) ) = 0 p =,. 33

34 v(s) = As + B s lim s = 0,A lim s s = 0 A = 0. f B (s) = B s 2 + = 0, f B(s) = 2B s 3 > 0 s = B f B (s). f B (s) = 2 B 4 > 0 B > 4 B > 4 f B (s). B 4 f B (s) f B (s) = 0. (iv) ( 4 ) τ(4 ( 4 τ v B (S 0 ) = Ẽ sb ) = (4 s B )Ẽ = (4 s B ) 5 5) 2 = (4 2j )2 j 2 j 4. (4 2 j+ )2 j+ (4 2 j )2 j > 2 j < 4 3 v B (s) j =, s B = 2. B = 4. (v) (iv) s B, B v B (s B) = = v B (s) s = s B 34

35 E n c X + c 2 Y (ω... ω n ) = I (c X(ω... ω ) + c 2 Y (ω... ω ))P (ω n+...ω ω...ω n ) ω n+...ω = c X(ω... ω )P (ω n+... ω )+ ω n+...ω c 2 Y (ω... ω )P (ω n+... ω ) ω n+...ω = c E n X(ω n+... ω ) + c 2 E n Y (ω n+... ω ) E n XY (ω... ω n ) = X(ω... ω n ) ω n+...ω Y (ω... ω )P (ω n+... ω ω... ω n ) = X(ω... ω n )E n Y (ω... ω n ) E n E m X = E n Z = Z(ω... ω m )P (ω n+... ω ω... ω n ) ω n+...ω = Z(ω... ω m )P (ω... ω m ) P (ω... ω n ) ω n+...ω m = X(ω... ω ) P (ω... ω ) P (ω... ω n ) P (ω ω m+...ω... ω m ) P (ω... ω m ) = E n X ω n+...ω m (v) n, m.n k Sn B n,m ( Ẽ n S k S ) n B k,m D k = B ẼnS k D k Ẽn S n D k n,m D n Ẽ n D m = S n D n S nd n Ẽ n D m = 0 Ẽ n D m 35 Ẽ k D m D k

36 ,. B n,m B n,m+ = ẼnD m D n ẼnD m+ D n = D n Ẽ n D m+ (+R m ) D m+ = ẼnD m+ R m D n V = ) + Ẽ D 3 (R 2 3 D V (H) = = 4 2, V (T ) = 0 (6.2.6), 2 ( 2 ) X = B,2 + 2 B 0,2 = ( R 2 ) 4. H, T X = V = ( 2 ) ( 2 X = B,3 + 2 B 0,3 = B, ) 7. H, T 2 2 V. (T ) 0, (H)., 3 (H) ( 4 ) X 2 = (H)B 2,3 + 2 (H)B,3(H) ( + R (H)) = ( R ) HH, HT X 2 = V 2 (H) = ( 4 ) X 2 = (H)B 2,2 + 2 (H)B,2(H) X 2 = V 2 (H). = (H) (H) =

37 Ẽ m+ k F n,m = = = D k B k,m+ Ẽ k D m+ F n,m Ẽ n D m Ẽ k D m+ Ẽ k D m+ Ẽ n D m+ Ẽ n D m Ẽ k Ẽn D m+ Ẽ k D m+ Ẽ n D m+ = ẼkD m Ẽ k D m+ = F k,m F n,m (6.3.3) F 0,2 = 0.05, F,2 (H) = 0.055, F,2 (T ) = Ẽ 3 F,2 = P 3 (H)F,2 (H) + P 3 (T )F,2 (T ) = n Sn B n,m, m S m Sn B n,m. n + V n+ ( D n+ V n+ = D Ẽn+ m S m S ) n = D n+ S n+ S n Ẽ n+ D m B n,m B n,m. = D n+ S n+ S nd n+ B n+,m B n,m V n+ = S n+ S nb n+,m B n,m r B n,m = ( + r) (n m), ( + r) m n (S n+ S n ( + r)) 37

38 . ( Fut n+ m Fut n,m = Ẽn+S m ẼnS m = ( + r) m S n+ ( + r) S ) n n+ ( + r) n = ( + r) m n (S n+ Sn(+r)).. ψ n+ (0) = ẼD n+v n+ (0) = 2 n+ ( + r 0 )... ( + r n (0)) ψ n (0) = ẼD nv n (0) = 2 n ( + r 0 )... ( + r n (0)) ψ n+ (0) =. ψ n (0) 2( + r n (0)) ψ n+ (k) = 2 n+ ( + r 0 )... ( + r n ) n + k. ψ n (k ) = 2 n ( + r 0 )... ( + r n ) n k. ψ n (k) = 2 n ( + r 0 )... ( + r n ) n k. n + k, ()n k n.(2)n k n., ψ n (k ), ψ n (k). n + r n (k ), + r n (k), 2( + r n (k )), 2( + r n (k)) 38

39 ψ n+ (k), ψ n+ (k) =.,. ψ n (k ) 2( + r n (k )) + ψ n (k) 2( + r n (k)) ψ n+ (n + ) = ẼD n+v n+ (n + ) = 2 n+ ( + r 0 )... ( + r n (n)) ψ n (n) = ẼD nv n (n) = 2 n ( + r 0 )... ( + r n (n )) ψ n+ (n + ) = ψ n (n) 2( + r n (n)) 39

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h

(1) 1 y = 2 = = b (2) 2 y = 2 = 2 = 2 + h B h h h< h 2 h 6 6.1 6.1.1 O y A y y = f() y = f() b f(b) B y f(b) f() = b f(b) f() f() = = b A f() b AB O b 6.1 2 y = 2 = 1 = 1 + h (1 + h) 2 1 2 (1 + h) 1 2h + h2 = h h(2 + h) = h = 2 + h y (1 + h) 2 1 2 O y = 2 1

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

koji07-02.dvi

koji07-02.dvi 007 I II III 1,, 3, 4, 5, 6, 7 5 4 1 ε-n 1 ε-n ε-n ε-n. {a } =1 a ε N N a a N= a a

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

2015/4/13 10: C C C C John C. Hull,, Steven E. Shreve, (1), Peter E. Kloeden, Eckhard Platen Num

2015/4/13 10: C C C C John C. Hull,, Steven E. Shreve, (1), Peter E. Kloeden, Eckhard Platen Num 2015/4/13 10:56 0 0.1 http://cm.hit-u.ac.jp/~kobayashi/lecture/ 0.2 C C C C John C. Hull,, Steven E. Shreve, (1, Peter E. Kloeden, Eckhard Platen Numerical Solution of Stochastic Differential Equations,

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

3 1 5 1.1........................... 5 1.1.1...................... 5 1.1.2........................ 6 1.1.3........................ 6 1.1.4....................... 6 1.1.5.......................... 7 1.1.6..........................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

untitled

untitled C n π/n σ S n π/n v h N tc C S S S S S S S S S S S S S σ v S C σ v C σ v S. O. C / 8 Grou ABCABC EAAEA E AA - A- AE A - N C v EC C σ v σ v σ v 6 C C σ v σ v σ v X X A X - AXB B A B A B B A A C B C A B...

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

I II III IV V

I II III IV V I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

untitled

untitled 8- My + Cy + Ky = f () t 8. C f () t ( t) = Ψq( t) () t = Ψq () t () t = Ψq () t = ( q q ) ; = [ ] y y y q Ψ φ φ φ = ( ϕ, ϕ, ϕ,3 ) 8. ψ Ψ MΨq + Ψ CΨq + Ψ KΨq = Ψ f ( t) Ψ MΨ = I; Ψ CΨ = C; Ψ KΨ = Λ; q

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information