ビーム物理_第4回.key

Size: px
Start display at page:

Download "ビーム物理_第4回.key"

Transcription

1 !

2 !

3 PART IV Synchrotron Radiation 1. Generation of Synchrotron Radiation! 2. Effects of Synchrotron Radiation on Beams

4 I. Generation of synchrotron radiation I. Maxwell Feynmann II. Syncrotron III. II. Effects of synchrotron radiation on beams I. II. III.

5 K-J.Kim s text book アメリカ物理学会加速器学校のテキスト シンクロトロン放射を真 面 目に取り扱う 位相の取り扱いに取り組むも 未完のようだ J.Schwinger s paper 1948~9 Schwinger Classical Electrodynamics (Jackson) Kim K.J., Characteristics of Synchrotron Radiation, AIP Conference Proceedings 184, vol. 1 p567 (American Institute of Physics, NewYork, 1989). PhysRev pdf Notes M. Sands slac-r-121.pdf Notes.pdf Notes

6 I. Maxwell Feynman 1.Maxwell 2. Feynman

7 Maxwell Maxwell

8 Lorentz

9 Green s δ

10 unit aming vector

11 t : " t :

12 t t (t)

13 Heaviside-Feynmann Coulomb Mixture " unit aiming vector n

14 II. Syncrotron 1. " 2.

15 8tp, -tst, tst<, A PlotRange Æ 880, r<, 8-r, r<<d 10 r@tp_d := 8r H1 - Cos@Cmov tp ê rdl, r Sin@Cmov tp ê rd<; H* curvature,observer,energy *L r = 10; robs = 80, 100<; grel = 50; H* physical consts.*l Clv = ; 1 e 0 = 4 Pi 10 ^H-7L Clv ; 2 qelec = ^-H19L; H* particle velocity *L 1 Cmov = Clv SqrtB 1 - grel F; 2 tst = HPi ê 4L r ê Clv; n

16 := - - tobs@tp_d := tp + R@tpD ê Clv; Plot@tobs@tpD, 8tp, -tst, tst<, PlotRange Æ AllD n@tp_d := Hrobs - r@tpdl ê R@tpD; ParametricPlot@8tp, n@tpd@@1dd<, 8tp, -tst, tst <, PlotRange Æ All, AspectRatio Æ 1D k@tp_d = D@tobs@tpD, tpd; Plot@k@tpD, 8tp, -tst, tst<d 0.30 ParametricPlot@8tobs@tpD, n@tpd@@1dd<, 8tp, -tst, tst <, PlotRange Æ All, AspectRatio Æ 1D n x n x

17 8tp, -tst, tst <, PlotRange Æ All, AspectRatio Æ 1D n x n x H* dnht'l dt = 1 kht'l dndt@tp_d = dnht'l dt' *L 1 k@tpd D@n@tpD, tpd; H* d2 nht'l 1 d dt 2 = 2 nht'l HkHt'LL 2 dt' 2 - k' dnht'l HkHt'LL 3 *L dt' d2ndt2@tp_d = 1 D@k@tpD, tpd D@n@tpD, 8tp, 2<D - Hk@tpDL2 Hk@tpDL D@n@tpD, tpd; ParametricPlot@8tobs@tpD, dndt@tpd@@1dd<, 8tp, -tst, tst <, AspectRatio Æ 1D ParametricPlot@8tobs@tpD, d2ndt2@tpd@@1dd<, 8tp, -tst ê 10, tst ê <, PlotRange Æ All, AspectRatio Æ 1D n x

18 Feynmann H* EHx,tL= q 4pe 0 : n R 2 + R c d J n dt R 2 N+ 1 d 2 n c 2 dt 2 > *L dnr2dt@tp_d = DB n@tpd, tpf ì k@tpd; R@tpD2 Efield@tp_D = qelec n@tpd 4 Pi e 0 R@tpD + R@tpD 2 Clv dnr2dt@tpd + 1 Clv d2ndt2@tpd ; 2 Table@ParametricPlot@8tobs@tpD, Efield@tpD@@iDD<, 8tp, -tst ê 10, tst ê 10 <, PlotRange Æ All, PlotPoints Æ 1000, AspectRatio Æ 1D, 8i, 1, 2<D

19

20 Fourier Nbin = 2^10; eqtime = Table@ FindRoot@ tobs@tpd ä Htobs@-tst ê 10D H1 - i ê NbinL + tobs@tst ê 10D Hi ê NbinLL, 8tp, -tst ê 10, tst ê 10<, AccuracyGoal Æ 24, WorkingPrecision Æ 34, MaxIterations Æ 50D, 8i, 0, Nbin<D; Edata = Efield@tpD ê. eqtime; ListPlot@Transpose@EdataD@@1DD, PlotRange Æ AllD Fdata = Fourier@Transpose@EdataD@@1DDD; ListPlot@Abs@FdataD, PlotRange Æ 880, Nbin ê 10<, All<D

21

22 z t << "FourierSeries`" r@tp_d := :- K und Clv Sin@w u tpd grel w u, K 2 und 2 Clv tp - K 2 und Clv Sin@2 w u tpd >; 2 grel 2 I8 grel 2 M w u z H* curvature,observer,energy *L K und = 1; l u = 0.04; N u = 10; robs = 80, 100<; grel = 50; H* physical consts.*l Clv = ; 1 e 0 = ; 4 Pi 10^H-7L Clv 2 qelec = ^-H19L; H* undulater frequency, velocity of moving charge, time duration of observation *L 2 Pi Clv w u = ; Cmov = Clv SqrtB 1 - l u tst = l u N u ê Cmov; 1 F; grel 2 x ParametricPlot@r@tpD, 8tp, 0, tst<, AspectRatio Æ 2, PlotRange Æ All, PlotPoints Æ 5000D

23 := - - tobs@tp_d := tp + R@tpD ê Clv; Plot@tobs@tpD, 8tp, 0, tst ê N u <, PlotRange Æ AllD t t k@tp_d = D@tobs@tpD, tpd; Plot@k@tpD, 8tp, 0, tst ê N u <, PlotPoints Æ 1000D κ t

24 unit aiming vector := Hrobs - r@tpdl ê R@tpD; Table@ParametricPlot@8tp, n@tpd@@idd<, 8tp, 0, tst ê N u <, AspectRatio Æ 1, PlotRange Æ AllD, 8i, 1, 2<D n x Table@ParametricPlot@8tobs@tpD, n@tpd@@idd<, 8tp, 0, tst ê N u <, AspectRatio Æ 1, PlotRange Æ All, PlotPoints Æ 1000D, 8i, 1, 2<D n x t t n z n1 z t t

25 Feynmamm E Hx, tl = q 4 pe 0 : n R 2 + R c d dt n + 1 d2 n > R 2 c 2 dt 2 Ex Ex Ex Ez Ez Ez

26 Nbin = 2^15; eqtime = Table@FindRoot@tobs@tpD ä Htobs@0D H1 - i ê NbinL + tobs@tstd Hi ê NbinLL, 8tp, 0, tst<, AccuracyGoal Æ 14, WorkingPrecision Æ 24, MaxIterations Æ 50D, 8i, 0, Nbin<D; Edata = Efield@tpD ê. eqtime; ListPlot@Transpose@EdataD@@1DD, PlotRange Æ All, Joined Æ TrueD Fdata = Fourier@Transpose@EdataD@@1DDD; ListPlot@Log@Abs@FdataDD, PlotRange Æ 880, Nbin ê 50<, All<, Joined Æ TrueD

27 Nbin = 2^15; eqtime = Table@FindRoot@tobs@tpD ä Htobs@0D H1 - i ê NbinL + tobs@tstd Hi ê NbinLL, 8tp, 0, tst<, AccuracyGoal Æ 14, WorkingPrecision Æ 24, MaxIterations Æ 50D, 8i, 0, Nbin<D; Edata = Efield@tpD ê. eqtime; ListPlot@Transpose@EdataD@@1DD, PlotRange Æ All, Joined Æ False, PlotStyle Æ [email protected] Fdata = Fourier@Transpose@EdataD@@1DDD; ListPlot@Log@Abs@FdataDD, PlotRange Æ 880, Nbin ê 100<, All<, Joined Æ FalseD

28 III. 1. " 2.

29 Analytical method of radiation calculation General formula(another expression) Far-field approximation

30 Acceleration gives electric field far from the source where in other form

31 Power and spectrum Power Spectrum where

32 Photon number Amplitude of electric field E^2 gives finding probability of photons.

33 Polarization vector

34 Electric field of each polarization in time domain

35 Electric field calculated in frequency domain

36 Analytic calculation of radiation from bending Emitter time t and observer time t.

37 Power spectrum of bending radiation where e^2 N N (Ne)^2 Ne^2 "

38 σ-polarization %-polarization Total

39

40 IV. Effects of Synchrotron Radiation on Beams" 1. " 2. " 3.

41 Transfer matrix

42 Transfer matrix Transfer matrix Transfer matrix

43 Determinant

44 "

45 u i ( ) t i ( )

46 t t t

47 FEL i, j

48

49

50 emittance

51

52

53

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ 80 80 80 3 3 5 8 10 12 14 14 17 22 24 27 33 35 35 37 38 41 43 46 47 50 50 52 54 56 56 59 62 65 67 71 74 74 76 80 83 83 84 87 91 91 92 95 96 98 98 101 104 107 107 109 110 111 111 113 115

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

加速器の基本概念 V : 高周波加速の基礎

加速器の基本概念  V : 高周波加速の基礎 .... V : KEK [email protected] http://research.kek.jp/people/takata/home.html 2015 2015 4 16 1 2 (1) 3 (2) 4 5 6 ERL: Energy Recovery Linac LCLS: Linac Coherent Light Source LC : µ-µ Koji Takata (KEK)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4

1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 -1- -2- 1-3- 2 3 - -4- nm 7. nm -5- APS Advanced Photon Source ESRF European Synchrotron Radiation Facility, APS ESRF, APS, ESRF, APS ESRF -6- 1,, APS ESRF APS ESRF

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:[email protected] A new technique has been

More information

ëoã…éqä‘ëäå›çÏóp.pdf

ëoã…éqä‘ëäå›çÏóp.pdf 1 2 1.1 2 1.2 4 1.3 10 1.4 13 2 14 2.1 16 2.1.a 1 16 2.1.b 18 2.1.c 2 20 2.1.d 24 2.1.e 24 2.1.f 25 2.2 Scheffler 25 2.3 Person Ryberg - 1 27 2.4 Person Ryberg - 2 Coherent Potential Approximation 31 2.5

More information

untitled

untitled C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) (Windows 98 ) ii iii iv v NEC Corporation 1999 vi P A R T 1 P A R T 2 vii P A R T 3 viii P A R T 4 ix P A R T 5 x P A R T 1 2 3 1 1 2 4 1 2 3 4 5 1 1 2 3 4 5 6 6 7 7 1 1 2 8 1 9 1 1 2 3 4 5 6 1 2 3 10

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1.....................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

原子・分子架橋系の量子輸送の理論 現状と展望

原子・分子架橋系の量子輸送の理論 現状と展望 1cm 10 21 1 m 1nm 10 9 1 10-4 N Maxwell DFT E.Tsuchida and M.Tsukada Phys.Rev.B52(1995)5573-5578 Phys.Rev.B54(1996)7602-7605 J.Phys.Soc.Jpn.67(1998)3844-3858 Chem.Phys.Lett.311(1999)236-240 N.Watanabe

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

ito.dvi

ito.dvi 1 2 1006 214 542 160 120 160 1 1916 49 1710 55 1716 1 2 1995 1 2 3 4 2 3 1950 1973 1969 1989 1 4 3 3.1 3.1.1 1989 2 3.1.2 214 542 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

静脈経腸栄養ガイドライン

静脈経腸栄養ガイドライン Contents PART I PARTII PARTIII PARTIV PARTV PART PART PART PART PART Part I PART I PART I PART I PART I PART I PART I

More information

EGunGPU

EGunGPU Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,

More information

入門ガイド

入門ガイド ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

/Users/yamada/Documents/webPage/public_html/kkk/ 8 プロット

/Users/yamada/Documents/webPage/public_html/kkk/ 8 プロット 8 8 Mathematica y = f(x) Plot Plot[f, {x, xmin, xmax}] f x x xmin ~ xmax In[]:= Plot@Sin@xD, 8x,, Pi

More information