news

Size: px
Start display at page:

Download "news"

Transcription

1 ETL NEWS

2 ETL NEWS Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida A new technique has been proposed and demonstrated for measuring the pulse timing fluctuations of mode-locked lasers at low Fourier frequencies. The time interval between the laser pulses is precisely measured by using zero-deadtime counters on referencing to a stable atomic oscillator. By combining this method with the time-domain demodulation technique, the phase noise power spectral density of a mode-locked Cr:LiSAF laser has been estimated for 1 mhz 1 MHz Fourier frequency with 240 db dynamic range MHz MHz MHz

3 ETL NEWS von der LindeSSB ~ ~ V(t)=V 0 [1+ ε(t)]sin[2 πf r t+ φ (t)], V f r ε(t)φ (t) φ (t) S φ ( f ) V(t) S φ ( f ) ε(t) φ (t) S φ ( f ) d t T = 1 φ() 2π dt 1 S φ ( f )

4 ETL NEWS (a) (b) N P N PN P N P N P ~

5 ETL NEWS (a) f 0 = 100 MHz f IF = MHz N P = N T = (b) (a)n P (b) S φ ( f ) ~ A ~ S φ ( f ) f f B 50mHz~1MHz ~ B

6 ETL NEWS S f (f) [rad 2 /Hz] f 0 = MHz f s = Hz N T = f [Hz] C B ABC ~ D σ y (τ) y = 1 2πf r dφ( t) dt σ y (τ) σ y (τ) ~ ~ σ y (τ) σ y (τ)

7 ETL NEWS σ N av = 4 N av = τ [s] ~ ~

8 ETL NEWS Low Temperature Scanning Synchrotron Microscope Synchrotron radiation for superconducting photon detection technology Quantum Radiation Division, Cryogenic Radioelectronics Lab. H. Pressler, M. Koike, T. Zama, M. Ukibe, N. Kobayashi, and M. Ohkubo * The ETL synchrotron radiation facility TERAS has been employed for superconducting photon detection technology. The new equipment called Low Temperature Scanning Synchrotron Microscope (LTSSM) is installed for characterizing superconducting X-ray photon detectors, which are kept at 0.4K. The LTSSM is beginning to provide important information for improving the performance of the superconducting detectors. C X X γ E λ che=hc/λ X γ γ µgµm µev X λ/ λ(= E/E)= ~ /s 0.7eV(λ=1.7µm)

9 ETL NEWS X E/E=0.02) γ X E/E 10-3 X γ (LTSSM) µm µm ADC Shaping amp. Position controller Preamp. Position controller SR 0.4K

10 ETL NEWS µm 2-6keV X X X µm X X Fe X FeX X XX X X X (2 =3.1meV) 2 EE/ X

11 ETL NEWS µ ~ ms ns µs ( fluxoid.pdf) µm 2 µmx x=y=17 X

12 ETL NEWS x=21 y 34 Charge output [a.u.] 18 y pixel number 200x200µm x Charge output [a.u.] y=18 Yield x=y=17 x pixel number Charge output [a.u.] µm Fe x=21 y y=18 x= X µ

13 ETL NEWS E/E=10-3 X X ( C Kα β XX X X X

14 ETL NEWS BERTHOUZE, Luc Felix Rene

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

OPA277/2277/4277 (2000.1)

OPA277/2277/4277 (2000.1) R OPA OPA OPA OPA OPA OPA OPA OPA OPA µ µ ± ± µ OPA ±± ±± ± µ Offset Trim Offset Trim In OPA +In -Pin DIP, SO- Output NC OPA Out A In A +In A A D Out D In D +In D Out A In A +In A A B Out B In B +In B

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

放射線化学, 97, 29 (2014)

放射線化学, 97, 29 (2014) 20 5 Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ µ µ LT1398/LT1399 V IN A R G 00Ω CHANNEL A SELECT EN A R F 3Ω B C 97.6Ω CABLE V IN B R G 00Ω EN B R F 3Ω 97.6Ω V OUT OUTPUT (00mV/DIV) EN C V IN C 97.6Ω R G 00Ω R F 3Ω 1399 TA01 R F = R G = 30Ω f = 30MHz

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i 25 Estimation scheme of indoor positioning using difference of times which chirp signals arrive 114348 214 3 6 , (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

AD8212: 高電圧の電流シャント・モニタ

AD8212: 高電圧の電流シャント・モニタ 7 V typ 7 0 V MSOP : 40 V+ V SENSE DC/DC BIAS CIRCUIT CURRENT COMPENSATION I OUT COM BIAS ALPHA 094-00 V PNP 0 7 V typ PNP PNP REV. A REVISION 007 Analog Devices, Inc. All rights reserved. 0-9 -- 0 40

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

LM837 Low Noise Quad Operational Amplifier (jp)

LM837 Low Noise Quad Operational Amplifier (jp) Low Noise Quad Operational Amplifier Literature Number: JAJSBB7 600 Low Noise Quad Operational Amplifier 2000 8 Converted to nat2000 DTD ds009047tl/h/9047 33020 19860602 10 V/ s ( ); 8 V/ s ( ) 25 MHz

More information

1

1 2 Light Source Technologies 2-1 Fourier Synthesis of Optical Pulses HYODO Masaharu, Kazi Sarwar ABEDIN, ONODERA Noriaki, and WATANABE Masayoshi With the rapid progress made recently in the field of optical

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp) ADC121S625 ADC121S625 12-Bit, 50 ksps to 200 ksps, Differential Input, Micro Power Sampling A/D Converter Literature Number: JAJSAB8 ADC121S625 12 50kSPS 200kSPS A/D ADC121S625 50kSPS 200kSPS 12 A/D 500mV

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

2007-Kanai-paper.dvi

2007-Kanai-paper.dvi 19 Estimation of Sound Source Zone using The Arrival Time Interval 1080351 2008 3 7 S/N 2 2 2 i Abstract Estimation of Sound Source Zone using The Arrival Time Interval Koichiro Kanai The microphone array

More information

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1 72 12 2016 pp. 739 748 739 43.60.+d 2 * 1 2 2 3 2 125 Hz 0.3 0.8 2 125 Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1. 1.1 PSS [1] [2 4] 2 Wind-induced noise reduction

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130- L i t r o n T o t a l L a s e r C a p a b i l i t y Nano Series Ultra Compact Pulsed Nd:YAG Lasers Product Range Specification Nano Range Specification Stable & Stable Telescopic Resonators Model Nano

More information

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple 1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

S-5.indd

S-5.indd Development and pplication of Ultrasonic Noise B-scan nalysis ( I-CLT ) Creep Damage ssessment for Fossil-Fuel Boiler Piping precise creep damage assessment method has been required for boiler plants using

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

untitled

untitled 3 4 4 2.1 4 2.2 5 2.3 6 6 7 4.1 RC 7 4.2 RC 8 4.3 9 10 5.1 10 5.2 10 11 12 13-1 - Bond Behavior Between Corroded Rebar and Concrete Ema KATO* Mitsuyasu IWANAMI** Hiroshi YOKOTA*** Hajime ITO**** Fuminori

More information

TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 年5月17日火曜日

TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 年5月17日火曜日 LCGT LCGT 2011/5/17, 1 TAMA --> CLIO ---> LCGT TAMA 300m基線長 三鷹(NAOJ) CLIO 100m 神岡 低温鏡 2 2011年5月17日火曜日 LCGT (Large-scale Cryogenic Gravitational wave Telescope) Underground in Kamioka, Japan Silent & Stable

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp) Precision CMOS Dual Operational Amplifier Literature Number: JAJS760 CMOS & CMOS LMC6062 CMOS 19911126 33020 23900 11800 ds011297 Converted to nat2000 DTD Edited for 2001 Databook SGMLFIX:PR1.doc Fixed

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

29 1 6 1 1 1.1 1.1 1.1( ) 1.1( ) 1.1: 2 1.2 1.2( ) 4 4 1 2,3,4 1 2 1 2 1.2: 1,2,3,4 a 1 2a 6 2 2,3,4 1,2,3,4 1.2( ) 4 1.2( ) 3 1.2( ) 1.3 1.3 1.3: 4 1.4 1.4 1.4: 1.5 1.5 1 2 1 a a R = l a l 5 R = l a +

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.I.v e pmd

.I.v e pmd Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

PET. PET, PET., PET 1, TPC 3.,. TPC,,. PET TPC 21 2 9 PET. PET, PET., PET 1, TPC 3.,. TPC,,. 1 6 2 PET 7 2.1........................... 7 2.1.1 PET..................... 7 2.1.2.......................... 10 2.2..............................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp) LMV851,LMV852,LMV854 LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifiers Literature Number: JAJSAM3 LMV851/LMV852/LMV854 8MHz CMOS EMI LMV851/LMV852/LMV854 CMOS IC 40 125 LMV851/

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information