(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1
|
|
|
- よりお よしくに
- 7 years ago
- Views:
Transcription
1 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [ ] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$ (12) $(a b)$ $f(x)$ $(a b)$ $x=a$ $x=b$ (12) $\phi(t)$ $x=\emptyset(t)$ $a=\emptyset(-\infty)$ $b=\emptyset(\infty)$ (13) $I= \int_{-\infty}^{\infty}f(\phi(t))\phi (t)dt$ (14) $\phi(t)$ $ f(\phi(t))\phi (t) \approx\exp(-c\exp t )$ $ t arrow\infty$ (15) - (14) $h$ 1 [29] (14) $I_{h}=h \sum_{k=-\infty}f(\emptyset(kh))\emptyset (kh)$ (16) 1 1 $[6 $
2 144 $k=-n_{-}$ $k=n_{+}$ $I_{h}^{(N)}=h \sum_{-}f(k=n_{-}\phi(kh))\phi (kh)$ $N=N_{+}+N_{-}+1$ (17) $N$ $ I_{h}-I_{h} (N)$ $ I-I_{h} $ (15) $N$ $0$ [31] (double exponential formula DE ) $(-11)$ $I= \int_{-1}^{1}f(x)dx$ (18) $x= \emptyset(t)=\tanh(\frac{\pi}{2}\sinh t)$ (19) $I_{h}^{(N)}=hk=_{-} \sum_{-} f(\mathrm{t}n(^{\frac{\pi}{2}}\sinh kh))\frac{2^{\vee-\cdot \mathrm{i}\cdot vl\phi}}{\cosh^{2}(\frac{\pi}{2}\mathrm{s}\dot{\mathrm{i}}\mathrm{h}kh)}$ $\langle$ (17) $N$ $ \Delta I_{h}^{(N)} = I-I_{h}^{()}N \simeq\exp(-c_{1}\frac{n}{\log N})$ (111) $N$ $0$ $(a b)=(-11)$ (12) $x=\tanh t$ (112) $ \Delta I_{h}^{()} N\mathrm{p}\approx \mathrm{e}\mathrm{x}(^{-c_{2}}\sqrt{n})$ (113) $N$ $0$ $N$ (111) $0$ (113) (11) $N=50$
3 145 (19) 16 (112) 3 (11) (17) $\langle$ [9] $I= \int_{-1}^{1}f(x)dx$ $\Rightarrow$ $x= \tanh(\frac{\pi}{2}\sinh t)$ (114) $I= \int_{0}^{\infty}f(x)dx$ $\Rightarrow$ $x= \exp(\frac{\pi}{2}\sinh t)$ (115) $I= \int_{0}^{\infty}f_{1}(x)\exp(-x)dx$ $\Rightarrow$ $x=\exp(t-\exp(-t))$ (116) $I= \int_{-\infty}^{\infty}f(x)dx$ $\Rightarrow$ $x= \sinh(\frac{\pi}{2}\mathrm{s}\dot{\mathrm{i}}\mathrm{h}t)$ (117) IMT [2 3 29] $(-11)$ $(-11)$ $[29 30]$ IMT $\exp(-c\sqrt{n})$ - IMT [12 $7 $ $[26 27]$ Stenger [25] Stenger $\int_{-\infty}^{\infty}g(w)dw$ vk $(-\infty \infty)$ $g(w)$ uk $ {\rm Im} w <d$ $warrow\pm\infty$ $(-\infty \infty)$ (113) $ {\rm Im} w <d$ $(-\infty \infty)$ (111) $ {\rm Im} w <d$ $\exp(-\exp(\frac{\pi}{2d} w ))$
4 $I_{\mathrm{c}}$ : Fourier Fourier $I_{s}$ $= \int_{0}^{\infty}f_{1}(_{x})$ si $\omega xdx$ $\{$ $I_{c} \cdot=\int_{0}^{\infty}f_{1}(_{x})\cos\omega Xdx$ (21) $\emptyset(-\infty)=0$ $\phi(+\infty)=\infty$ (22) $tarrow-\infty$ $\phi (t)arrow 0$ (23) $tarrow+\infty$ $\phi(t)$ $\phi(t)arrow t$ (24) $I_{s}$ : $x=m\phi(t)/\omega$ $\{$ $(M=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t})$ (25) $x=m \phi(t-\frac{\pi}{2m})/\omega$ 1990 [18] $M$ $x$ $\sin\omega x$ $\cos\omega x$ $x$ $\emptyset(t)=\frac{t}{1-\exp(-k\mathrm{s}\dot{\mathrm{i}}\mathrm{h}t)}$ $k=6$ (26) [18] $\emptyset(t)=\frac{t}{1-\exp(-2t-\alpha(1-e^{-l})-\beta(e^{t}-1))}$ (27) $\beta=1/4$ $\alpha=\beta/\sqrt{1+m\log(1+m)/(4\pi)}$ (28)
5 $\lim_{\epsilon\downarrow\theta}$ $\int_{0}^{\infty}\exp(-\epsilon 147 [ ] (21) $I_{s}$ $I_{s}=M \int_{-\infty}^{\infty}f1(m\phi(t)/\omega)\sin(m\emptyset(t))\phi (t)/\omega dt$ (29) $I_{sh}^{(N)}=M \text{ }=-N_{-}\sum_{k}^{N}f_{1}(+M\phi(k\text{ })/\omega)s\mathrm{i}n(m\phi(k\text{ }))\emptyset^{j}(k\text{ })/\omega$ (210) $I_{\mathrm{c}}$ $M$ $M\text{ }=\pi$ $I_{c}$ (211) sin(m\mbox{\boldmath $\phi$}(k ))\sim sin $Mk\text{ }=\sin\pi k=0$ $\{$ $\cos(m\phi(kh-\frac{\pi}{2m}))\sim\cos(mk\text{ }-\frac{\pi}{2})=\cos(\pi k-\frac{\pi}{2})=0$ (212) $k$ $\sin\omega x$ $\cos\omega x$ $I= \int_{0}^{\infty}\log \mathcal{i}\sin \mathcal{i}dx=-\gamma$ (213) $\log x$ $[18 20]$ 1: $\log x\sin \mathcal{i}$ X)\log x\sin xdx=-\gamma$ (214)
6 148 (210) $f1(x)=\log x$ $-\gamma$ 1 $\log x\sin X$ $x$ $\sin x$ 3 Cauchy $I= \mathrm{p}\mathrm{v}\int_{-1}^{1}\frac{f(x)}{x-\lambda}dx$ $(31)$ Hadamard $I= \mathrm{f}\mathrm{p}\int_{-1}^{1}\frac{f(x)}{(x-\lambda)^{n}}dx$ (32) [13] Bessel $I= \int_{0}^{\infty}\frac{x}{x^{2}+1}j\mathrm{o}(x)d_{x}$ (33) [18] [ ] Bessel $I= \int_{-\infty}^{\infty}$ sign $xf(x)d_{x}=( \int_{0}^{\infty}-\int_{-\infty}^{0})f(x)dx$ (34) [16] Euler [ ] $I= \int_{0}^{\infty}j_{0}(\sqrt{2x+x^{2}})dx$ (35) 4Sinc $\langle$ Sinc \langle
7 149 $(-\infty \infty)$ Sinc $S(k h)( \mathcal{i})=\frac{\sin\frac{\pi}{h}(_{x}-k\text{ })}{\pi}$ $\frac{/l}{\frac(x\pih-kh)}$ $k=0$ $\pm 1$ $\pm 2$ $\cdots$ (41) $h$ 2 $k$ $h=1$ Sinc 2: $=1$ Sinc $S(-1 h)$ $S$ ( $\mathrm{o}$ ) $S(k h)(x)$ $k=0$ $\pm 1$ $\pm 2$ $\cdots$ $S(1 h)$ $f_{n}(x)= \sum_{nk=-}f(kh)s(k h)(x)$ $N=2n+1$ (42) Sinc Sinc $\int_{-\infty}^{\infty}\sum_{k=_{-}n}f(kh)s(k h)(x)dx=h\sum_{nk=-}f(kh)nn$ (43) Sinc Sinc 1974 [32] Sinc Sinc [28] Sinc [25] Sinc $(-\infty \infty)$ \infty [25]
8 150 Sinc [28] Sinc Sinc-Galerkin [1] $\{$ $\tilde{y} (_{X})+\tilde{\mu}(_{X})\tilde{y} (_{X})+\tilde{\mathcal{U}}(x)\tilde{y}=\tilde{\sigma}(X)$ $\tilde{y}(a)=\tilde{y}(b)=0$ $a<x<b$ (44) $x=\emptyset(t)$ $a=\emptyset(-\infty)$ $b=\emptyset(\infty)$ (45) $(-\infty \infty)$ $y(t)=\tilde{y}(\emptyset(t))$ (46) (44) $y (t)+\mu(t)y(\prime t)+\nu(t)y(t)=\sigma(t)$ $y(-\infty)=y(\infty)=0$ $-\infty<t<\infty$ (47) $y(t)$ $y_{n}(t)= \sum_{k=-n}wks(k h)(t)$ $N=2n+1$ (48) Sinc-Galerkin $ y(t) \leq\alpha\exp(-\beta t )$ (49) $ y(t)-y_{n}(t) \leq dn^{\frac{5}{2}}\exp(-c\sqrt{n})$ (410) $y(t)$ $ y(t) \leq\alpha\exp(-\beta\exp(\gamma t ))$ (411) $ y(t)-yn(t) \leq c N^{2}\exp(-\frac{cN}{\log N})$ (412) (412) (410) (412)
9 151 Sinc Sinc-Collocation Sturm-Liouville (412) [4] Schr\"odinger pseudospectral $\text{ }\dot{\text{ }}$ $\langle$ Sinc [5] 2 [1] Sinc-Galerkin [2] No 91 (1970) [3] M Iri S Moriguti and Y Takasawa On a certain quadrature formula J Comput Appl Ma 17 (1987) 3-20 ([2] ) [4] Sturm-Liouville [5] Sinc Pseudospectral DE [6] M Mori On the superiority of the trapezoidal rule for the integration of periodic analytic functions Memoirs of Numaerical Maffiematics No1 (1974) [7] M Mori An IMT-type double exponential fonnula for numerical integration Publ RIMS Kyoto Univ 14 (1978) [8] M Mori Quadrature formulas obtained by variable transformation and the DErule $J$ Comput Appl Math 12&13 (1985) [9] M Mori The double exponential fornula for numerical integration over the half infinite interval Numericd Maffiematics Singapore 1988 Intemational Seri\ e of Numerical Mathematics 86 (1988) (Birkh\"auser)
10 152 [10] M Mori An error analysis of quadrature formulas obtained by variable transformation Algebraic Analysis Vol1 ed M Kashiwara and T Kawai (Academic Press) [11] M Mori Developments in the double exponential formulas for numerical integration Proceedings of ffie Internationd Congress of Maffiematicians Kyoto ( $\mathrm{s}_{\mathrm{p}^{\gamma}}\dot{\mathrm{i}}\mathrm{g}\mathrm{e}\mathrm{r}$-verlag Tokyo 1991) [12] K Murota and M Iri Parameter tuning and repeated application of the IMT-type transformation in numerical quadrature Numer Maffi 38 (1982) [13] Cauchy Hadamard DE 3(1993) [14] Bessel [15] Bessel No 944 (1996) [16] Bessel 6(1996) [17] DE [18] T Ooura and M Mori The double exponential formula for oscillatory functions over the half infinite interval J Comput Appl Math 38 (1991) [19] Euler [20] T Ooura and M Mori Double exponential formula for Fourier type integrals with a divergent integrand Contributions in Numerical Maffiematics World Scientific Series in Applicable Analysis 2 (1993) [21] [22] Euler DE [23] Fourier 1997
11 153 [24] T Ooura and M Mori A robust double exponential formula for Fourier type integrals submitted for publication in J Comput Appl Maffi [25] F Stenger Numerical Meffiods Based on Sinc and Analytic Functions (Springer-Verlag New York 1993) [26] DE $\mathrm{n} 0585$ (1986) [27] M Sugihara Optimality of the double exponential formula functional analysis $\mathrm{a}\triangleright$ proach NumerMath 75 (1997) [28] Sinc No$9\Re(1997) $ [29] H Takahasi and M Mori Error estimation in the numerical integration of analytic ffinctions Report Comput Centre Univ Tokyo 3 (1970) [30] H Takahasi and M Mori Quadrature formulas obtained by variable transformation Numer Maffi 21 (1973) [31] H Takahasi and M Mori Double exponential formulas for numerical integration Publ RIMS Kyoto Univ 9 (1974) [32] No 253 (1975) 24-37
$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)
$\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita
105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2
1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原
A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$
1075 1999 127-142 127 (Shintaro Yamashita) 7 (Takashi Watanabe) $\mathrm{n}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{m}\mathrm{u}\mathrm{f}\mathrm{a}\rangle$ (Ikuo 1 1 $90^{\mathrm{o}}$ ( 1 ) ( / \rangle (
日本糖尿病学会誌第58巻第2号
β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047
9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1
untitled
1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou
(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.
40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45
ro 980 1997 44-55 44 $\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{i}$ $-$ (Ko Ma $\iota_{\mathrm{s}\mathrm{u}\mathrm{n}}0$ ) $-$. $-$ $-$ $-$ $-$ $-$ $-$ 40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45 46 $-$. $\backslash
数理解析研究所講究録 第1908巻
1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,
836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary
6. Euler x
...............................................................................3......................................... 4.4................................... 5.5......................................
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R
29 ( ) 90 1 2 2 2 1 3 4 1 5 1 4 3 3 4 2 1 4 5 6 3 7 8 9 f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx 11 0 24 n n A f(x) = Ax
1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier
Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is
日本糖尿病学会誌第58巻第3号
l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ
診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ
Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R
$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,
併殺を考慮したマルコフ連鎖に基づく投手評価指標とそ Titleの 1997 年度日本プロ野球シーズンでの考察 ( 最適化のための連続と離散数理 ) Author(s) 穴太, 克則 Citation 数理解析研究所講究録 (1999), 1114: 114-125 Issue Date 1999-11 URL http://hdlhandlenet/2433/63391 Right Type Departmental
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6
Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S
Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.
() 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >
Kullback-Leibler
Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4
<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>
信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...
20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t
1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$
Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t
RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n
09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................
(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like
() 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)
