数理解析研究所講究録 第1977巻

Size: px
Start display at page:

Download "数理解析研究所講究録 第1977巻"

Transcription

1 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double 1 Introduction Ding-Iohara-Miki modular Ding-Iohara-Miki modular double Ding-Iohara-Miki Ding-Iohara-Miki modular double 1.1 $Ding-Iohara-Mik\dot{\ovalbox{\tt\small REJECT}}$ Ding-Iohara-Miki 1997 Ding Iohara $U_{q}(\hat{sl_{2}})$ [DI]. $g(x^{-1})=g(x)^{-1}$ Ding-Iohara 2007 $W_{1+\infty}$ $q$- [Miki] Ding Iohara Ding-Iohara Ding-Iohara-Miki

2 34 Ding-Iohara-Miki Macdonald [Mac] 2009 Feigin-Hashizume-Hoshino-Shiraishi- Yanagida [FHHSY] $T_{q,x}$ q- : $T_{q,x}f(x):=f(qx)$. Macdonald $H_{N}(q, t)(n\in \mathbb{z}_{>0})$ $q$- $H_{N}(q, t):= \sum_{i=1}^{n}\prod_{j\neq i}\frac{tx_{i}-x_{j}}{x_{i}-x_{j}}t_{q,x_{i}}.$ Feigin Feigin-Odesskii Macdonald $q$- Ding-Iohara-Miki Macdonald Ding-Iohara-Miki $ p <1$ $p\in \mathbb{c}$ $(x;p)_{\infty}:= \prod_{n\geq 0}(1-xp^{n})(x\in \mathbb{c})$ $\Theta_{p}(x)$ $\Theta_{p}(x):=(p;p)_{\infty}(x;p)_{\infty}(px^{-1};p)_{\infty} (x\in \mathbb{c}^{\cross})$. Macdonald Ruijsenaars [R1] : $H_{N}(q, t, p):= \sum_{i=1}^{n}\prod_{j\neq i}\frac{\theta_{p}(tx_{i}/x_{j})}{\theta_{p}(x_{i}/x_{j})}t_{q,x_{t}}.$ Macdonald $\Theta_{p}(x)\vec{parrow 0}1-x$ $H_{N}(q, t, p)h_{n}(q, t)\vec{parrow 0}.$ Feigin Odesskii FFeigin-Odesskii [FO] Feigin Feigin-Odesskii Ruijsenaars $q$- Ruijsenaars 2009 Feigin Ruijsenaars 2 [Sal]. Ruijsenaars

3 $\tilde{f}$ $\tilde{f}$ 35 Ding-Iohara-Miki Ding-Iohara-Miki Ding-Iohara-Miki [Sal]. Feigin-Odesskii Ruijsenaars $q$- [Sa2] 1.2 modular double modular double 2 modular Faddeev [F] modular double $U_{q}(sl_{2}(\mathbb{R}))$ $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))$ Virasoro $c_{\tau}=13-6( \tau+\frac{1}{\tau}) (\tau\in \mathbb{c})$ $c_{\tau}=c_{1/\tau}$ modular modular Faddeev $q=e^{2\pi i\tau}$ $U_{q}(sl_{2}(\mathbb{R}))$ $\overline{q}:=e^{2\pi i/\tau}$ $U_{\overline{q}}(sl_{2}(\mathbb{R}))$ $U_{q}(sl_{2}(\mathbb{R}))$ modular $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))$ double modular double Ip $[Ip $, Nidaiev-Teschner [NT] 1.1 ( $U_{q}(sl_{2}(\mathbb{R}))$ modular double $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))$ $q$ $\tau\in ). $:=e^{2\pi i\tau},$ $\overline{q}:=e^{2\pi i/\tau}$ $U_{q}(sl_{2}(\mathbb{R}))$ modular double \mathbb{r}\backslash \mathbb{q}$ $U_{q,\overline{q}}(sl_{2}(\mathbb{R})):=U_{q}(sl_{2}(\mathbb{R}))\otimes U_{\overline{q}}(sl_{2}(\mathbb{R}))$ $K^{\pm 1},$ $E,$ $F$, $\tilde{k}^{\pm 1},$ $\tilde{e},$ $\mathbb{c}$ $KK^{-1}=K^{-1}K=1,$ $KEK^{-1}=q^{2}E,$ $KFK^{-1}=q^{-2}F,$ $[E, F]= \frac{k-k^{-1}}{q-q-1},$ $\tilde{k}\tilde{k}^{-1}=\tilde{k}^{-1}\tilde{k}=1,$ $\tilde{k}\tilde{e}\tilde{k}^{-1}=\overline{q}^{2}\tilde{e},$ $\tilde{k}\tilde{f}\tilde{k}^{-1}=\overline{q}^{-2}\tilde{f},$ $[ \tilde{e}, \tilde{f}]=\frac{\tilde{k}-\tilde{k}^{-1}}{\overline{q}-\overline{q}^{-1}},$ $[X, Y]=0$ $(X=K^{\pm 1}, E, F, Y=\tilde{K}^{\pm 1},\tilde{E},\tilde{F})$. $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))=U_{q}(sl_{2}(\mathbb{R})) \otimes U_{\overline{q}}(sl_{2}(\mathbb{R}))$ $K^{\pm 1},$ $E,$ $F$ $U_{q}(sl_{2}(\mathbb{R}))$ $\tilde{k}^{\pm 1},$ $\tilde{e},$ $ q = \overline{q} =1$ $U_{\overline{q}}(sl_{2}(\mathbb{R}))$ $\tau\in \mathbb{r}\backslash \mathbb{q}$

4 $S(\omega_{1}, \omega_{2};u)=\{\begin{array}{l}\frac{(e(u/\omega_{2});e(\omega_{1}/\omega_{2}))_{\infty}}{(e(-\omega_{2}/\omega_{1})e(u/\omega_{1});e(-\omega_{2}/\omega_{1}))_{\infty}} ({\rm Im}(\omega_{1}/\omega_{2})>0),\frac{(e(u/\omega_{1});e(\omega_{2}/\omega_{1}))_{\infty}}{(e(-\omega_{1}/\omega_{2})e(u/\omega_{2});e(-\omega_{1}/\omega_{2}))_{\infty}} ({\rm Im}(\omega_{2}/\omega_{1})>0).\end{array}$ 36 (modular ). $\taurightarrow\underline{1}$ $Xrightarrow\tilde{X}$ $(X=K, E, F)$. $U_{q}(sl_{2}(\mathbb{R}))$ $U_{\overline{q}}(sl_{2}(\mathbb{R}))$ modular double $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))$ $\taurightarrow 1/\tau$ $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))$ universal $R$ $(2 S(\omega_{1}, \omega_{2};u \omega_{1}, \omega_{2} {\rm Re}(\omega_{1})>0,$ ${\rm Re}(\omega_{2})>0$ 2 $S(\omega_{1}, \omega_{2};u)$ $S( \omega_{1}, \omega_{2};u):=\exp(\int_{\mathbb{r}+i0}\frac{e^{ku}}{(1-e^{\omega_{1}k})(1-e^{\omega_{2}k})}\frac{dk}{k})$ $(0<{\rm Re}(u)<{\rm Re}(\omega_{1}+\omega_{2}$ 2 $S(^{(}\omega_{1}, \omega_{2};u)$ $=S(\omega_{2}, \omega_{1};u)$ 1.3 $(2 S(\omega_{1}, \omega_{2};u)$ ). (1) $u\in \mathbb{c}$ $e(u):=e^{2\pi iu}$ ${\rm Im}(\omega_{1}/\omega_{2})\neq 0$ 2 $S(\omega_{1}, \omega_{2};u)$ (2) ( [K]) $x$ $ x $ $:= \min\{ x-n n\in \mathbb{z}\}$ $\omega_{1},$ $\omega_{2}\in \mathbb{r}_{>0}$ $\lim_{narrow\infty} n\omega_{1}/\omega_{2} ^{1/n}=1$ 2 $S(\omega_{1},\omega_{2};u)$ $S( \omega_{1}, \omega_{2};u)=\exp(-\sum_{n>0}\frac{e(nu/\omega_{2})}{1-e(n\omega_{1}/\omega_{2})}\frac{1}{n}-\sum_{n>0}\frac{e(nu/\omega_{1})}{1-e(n\omega_{2}/\omega_{1})}\frac{1}{n})$ $({\rm Im}(u)>0)$. 1.3 Ding-Iohara-Miki modular double Ding-Iohara-Miki modular double 2 Ding-Iohara-Miki 2 Ding-Iohara-Miki 2

5 37 Ruijsenaars $q$- $q$ $p$ Ruijsenaars [R1], Calogero-Moser Ruijsenaars $H_{N}(q, t,p)(n\in \mathbb{z}_{>0})$ $q$- $H_{N}(q, t, p):= \sum_{i=1j}^{n}\prod_{\neq i}\frac{\theta_{p}(tx_{i}/x_{j})}{\theta_{p}(x_{i}/x_{j})}t_{q,x_{i}}.$ $q,$ $p\in \mathbb{c}$ $ q <1,$ $ p <1$ $\Gamma_{q,p}(x)$ $\Gamma_{q,p}(x):=\frac{(qpx^{-1};q,p)_{\infty}}{(x;q,p)_{\infty}} (x\in \mathbb{c}^{\cross})$. Ruijsenaars $H_{N}(q, t,p)$ kernel function $\Pi_{MN}(q, t,p)(x, y)(m, N\in \mathbb{z}_{>0})$ $\Pi_{MN}(q, t,p)(x, y):=1\leq i\leq M\prod_{1\leq j\leq N}\frac{\Gamma_{q,p}(x_{i}y_{j})}{\Gamma_{q,p}(tx_{i}y_{j})}.$ kernel function Ruijsenaars [R2], [KNS] : $H_{N}(q, t,p)_{x}\pi_{nn}(q, t,p)(x, y)=h_{n}(q, t,p)_{y}\pi_{nn}(q, t,p)(x, y)$. $H_{N}(q, t,p)_{x}$ $x_{1}$,..., $x_{n}$ Ruijsenaars $x$ $y$ [Sa2] $\Gamma_{q,p}(x)=\Gamma_{p,q}(x)$ Ruijsenaars kernel function $\Pi_{MN}(q, t,p)(x, y)$ $q$ $p$ kernel function $\Pi_{MN}(q, t,p)(x, y)$ Ruijsenaars $H_{N}(q, t,p)$ $q$ $p$ $H_{N}(p, t, q):=h_{n}(q, t,p) _{qrightarrow p}= \sum_{i=1j}^{n}\prod_{\neq i}\frac{\theta_{q}(tx_{i}/x_{j})}{\theta_{q}(x_{i}/x_{j})}t_{p,x_{\iota}}$ kernel function Ruijsenaars $H_{N}(q, t,p)$ $q$ $p$ $qrightarrow p$ Ruijsenaars $H_{N}(p, t, q)$ : $[H_{N}(q, t, p), H_{N}(p, t, q)]=0.$

6 38 $qrightarrow p$ Ruijsenaars modular double $U_{q}(sl_{2}(\mathbb{R}))$ $U_{q,\overline{q}}(sl_{2}(\mathbb{R}))$ modular double $=$ Ruijsenaars Ding-Iohara-Miki $=$ : $\Gamma_{el1}(\omega_{1}, \omega_{2};u):=\frac{(e(\omega_{1}+\omega_{2}-u);e(\omega_{1}),e(\omega_{2}))_{\infty}}{(e(u);e(\omega_{1}),e(\omega_{2}))_{\infty}}.$ 1.4 $(} \Gamma_{el1}(\omega_{1}, \omega_{2};u)$ modular [FV] [Naru]). $\omega_{1},$ $\omega_{2}\in \mathbb{c}$ ${\rm Im}(\omega_{1})>0,$ ${\rm Im}(\omega_{2})>0$, ${\rm Im}(\omega_{1}/\omega_{2})>0$ $\Gamma_{el1}(\omega_{1}, \omega_{2};u)$ $\Gamma_{el1}(\omega_{1}, \omega_{2};u)=e^{-\pi iq(\omega_{1},\omega_{2};u)}\gamma_{el1}(\frac{\omega_{1}}{\omega_{2}}, -\frac{1}{\omega_{2}};\frac{u}{\omega_{2}})\gamma_{el1}(-\frac{\omega_{2}}{\omega_{1}}, -\frac{1}{\omega_{1}};\frac{u-\omega_{2}}{\omega_{1}})^{-1}$ $u\in \mathbb{c}$ $Q(\omega_{1}, \omega_{2};u)$ $Q(\omega_{1}, \omega_{2};u)$ $= \frac{u^{3}}{3\omega_{1}\omega_{2}}-\frac{1}{2}(\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}}-\frac{1}{\omega_{1}\omega_{2}})u^{2}+\frac{1}{6}[\frac{\omega_{1}}{\omega_{2}}+\frac{\omega_{2}}{\omega_{1}}+3-3(\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}})+\frac{1}{\omega_{1}\omega_{2}}]u$ $- \frac{1}{12}(\omega_{1}+\omega_{2}-\frac{\omega_{1}}{\omega_{2}}-\frac{\omega_{2}}{\omega_{1}}-3+\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}})$. 1.5 $(} \Gamma_{e11}(\omega_{1}, \omega_{2};u)$ ). $\omega_{1},$ ${\rm Im}(\omega_{1})>0,$ ${\rm Im}(\omega_{2})>0$ $\omega_{2}\in \mathbb{c}$ $\Gamma_{el1}(\omega_{1}, \omega_{2};u)$ 2 $S(\omega_{1}, \omega_{2};u)$ $\lim_{rarrow 0}e^{\frac{\pi}{12r\omega\omega 2}i(2u-\omega_{1}-\omega_{2})_{\Gamma_{el1}(r\omega_{1},r\omega_{2};ru)}}=e^{-\frac{\pi}{2}B_{2,2}(\omega_{1},\omega_{2};u)}S(\omega_{1}, \omega_{2};u)^{-1}.$ $B_{2,2}(\omega_{1}, \omega_{2};u)$ 2 Bernoulli $B_{2,2}( \omega_{1}, \omega_{2};u):=\frac{u^{2}}{\omega_{1}\omega_{2}}-(\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}})u+\frac{1}{6}(\frac{\omega_{1}}{\omega_{2}}+\frac{\omega_{2}}{\omega_{1}})+\frac{1}{2}.$ modular double 2 universl $R$ modular

7 39 modular double Ding-Iohara-Miki 2 Ding lohara-miki modular double modular $+$ 2 $r_{modular}$ $+$ Ding-Iohara-Miki Ding-Iohara-Miki modular $+$ Ding-Iohara-Miki modular double 2.1 Ding-lohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ ${\rm Im}(\tau)>0$ $\theta_{\tau}(u)$ $\theta_{\tau}(u):=(e(u);e(\tau))_{\infty}(e(\tau-u);e(\tau))_{\infty} (u\in \mathbb{c})$. 2.1 $ \mathcal{u}(\omega, \sigma, \tau)$ $( Ding- Iohara-$Miki [Sal]). $\sigma\in \mathbb{c}$ $\omega,$ ${\rm Im}(\omega)>0,$ ${\rm Im}(-\sigma)>0$ $e(\omega)^{a}e(\sigma)^{b}\neq 1(\forall(a, b)\in \mathbb{z}^{2}\backslash (0,0))$ $\mathbb{k}:=\mathbb{q}(e(\omega/4), e(\sigma/4))$ $f^{\pm}(\tau;u)$, $g_{\tau}(u)$ $f^{+}(\tau;u):=\theta_{\tau}(\omega+u)\theta_{\tau}(-\sigma+u)\theta_{\tau}(-\omega+\sigma+u)$, $f^{-}(\tau;u):=\theta_{\tau}(-\omega+u)\theta_{\tau}(\sigma+u)\theta_{\tau}(\omega-\sigma+u)$, $g_{\tau}(u):=f^{+}(\tau;u)/f^{-}(\tau;u)$. $x^{\pm}(\tau;u)$, $\psi^{\pm}(\tau;u)$ $x^{\pm}( \tau;u)=\sum_{d\geq 0}\sum_{n\in \mathbb{z}}x_{d}^{\pm}[n]e(-nu)p^{d},\psi^{\pm}(\tau;u)=\sum_{d\geq 0}\sum_{n\in \mathbb{z}}\psi_{d}^{\pm}[n]e(-nu)p^{d}.$ $p=e(\tau)$ Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ $\{x_{d}^{\pm}[n]\}_{n\in \mathbb{z}}^{d\geq 0},$ $\{\psi_{d}^{\pm}[n]\}_{n\in \mathbb{z}}^{d\geq 0}$ $\mathbb{k}[$ $c$ $p]$ ]

8 40 $[\psi^{\pm}(\tau;u), \psi^{\pm}(\tau;v)]=0,$ $\psi^{+}(\tau;u)\psi^{-}(\tau;v)=\frac{g_{\tau}(c-u+v)}{g_{\tau}(-c-u+v)}\psi^{-}(\tau;v)\psi^{+}(\tau;u)$, $\psi^{+}(\tau;u)x^{\pm}(\tau;v)=g_{\tau}(\mp\frac{c}{2}-u+v)^{\mp 1}x^{\pm}(\tau;v)\psi^{+}(\tau;u)$, $\psi^{-}(\tau;u)x^{\pm}(\tau;v)=g_{\tau}(\mp\frac{c}{2}-u+v)^{\pm 1}x^{\pm}(\tau;v)\psi^{-}(\tau;u)$, $-e(u-v)^{3}f^{\pm}(\tau;-u+v)x^{\pm}(\tau;u)x^{\pm}(\tau;v)=f^{\pm}(\tau;u-v)x^{\pm}(\tau;v)x^{\pm}(\tau;u)$, $[x^{+}(\tau;u), x^{-}(\tau;v$ $=c( \omega, \sigma, \tau)\{\delta(c-u+v)\psi^{+}(\tau;\frac{c}{2}+v)-\delta(-c-u+v)\psi^{-}(\tau;-\frac{c}{2}+v)\}.$ $\delta(u)$ $:= \sum_{n\in \mathbb{z}}e(nu)$ $c(\omega, \sigma, \tau)\in \mathbb{k}[$ $p]$ ] $c( \omega, \sigma, \tau):=\frac{\theta_{\tau}(\omega)\theta_{\tau}(-\sigma)}{(p;p)_{\infty}^{2}\theta_{\tau}(\omega-\sigma)}.$ Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ $\mathcal{u}(\omega, \sigma, \tau)$ Ding-Iohara-Miki $\tauarrow i\infty(parrow 0)$ Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma)$ 2.2 $Ding-\ovalbox{\tt\small REJECT} ohara-m\dot{\ovalbox{\tt\small REJECT}}k\dot{\ovalbox{\tt\small REJECT}}$ Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ 2.2 $( Ding- Iohara-$Miki $ \mathcal{u}(\omega, \sigma, \tau)$ ). $x$ $T_{\omega,x}$ $x$ $\omega$ : $T_{\omega,x}f(x):=f(x+\omega)$. $\pi_{0}$ : $\mathcal{u}(\omega, \sigma, \tau)arrow End_{\mathbb{K}[[p]]}(\mathbb{K}[[p]][e(\pm x)])$ $\mathcal{u}(\omega, Ding-Iohara-Miki \sigma, \tau)$ $\pi_{0}[c]:=0,$ $\pi_{0}[x^{+}(\tau;u)]:=\frac{\theta_{\tau}(-\sigma)}{(p;p)_{\infty}^{2}}\delta(-\omega+\sigma+x-u)t_{\omega,x}^{-1},$ $\pi_{0}[x^{-}(\tau;u)]:=\frac{\theta_{\tau}(\sigma)}{(p;p)_{\infty}^{2}}\delta(\sigma+x-u)t_{\omega,x},$

9 $\pi_{0}[\psi^{+}(\tau;u)]:=\frac{\theta_{\tau}(x-u)\theta_{\tau}(-\omega+2\sigma+x-u)}{\theta_{\tau}(\sigma+x-u)\theta_{\tau}(-\omega+\sigma+x-u)},$ 41 $\pi_{0}[\psi^{-}(\tau;u)]:=\frac{\theta_{\tau}(-x+u)\theta_{\tau}(\omega-2\sigma-x+u)}{\theta_{\tau}(-\sigma-x+u)\theta_{\tau}(\omega-\sigma-x+u)}.$ $\mathcal{u}(\omega, \sigma, \tau)$ Ding-Iohara-Miki $\tauarrow i\infty(parrow 0)$ $\mathcal{u}(\omega, \sigma)$ Ding-Iohara-Miki 2.3 $\theta_{\mathcal{t}}(u)=(e(u);e(\tau))_{\infty}(e(\tau-u);e(\tau))_{\infty}$ modular $\tauarrow-1/\tau$ : $\theta_{-1/\tau}(u/\tau)=\exp[\pi i\{\frac{u^{2}}{\tau}+(\frac{1}{\tau}-1)u+\frac{1}{6}(\tau+\frac{1}{\tau})-\frac{1}{2}\}]\theta_{\tau}(u)$. 2.2 Ding-Iohara-Miki () Ding-Iohara-Miki modular 2.3 $( Ding- Iohara-$Miki modular ). $ \mathcal{u}(\omega, \sigma, \tau)$ Ding-Iohara-Miki modular $\mathcal{u}(\omega, \sigma, \tau)$ $M_{\tau}[\pi_{0}[x^{+}(\tau;u$ $= \exp[-\pi i\{\frac{\sigma^{2}}{\tau}-(\frac{1}{\tau}-1)\sigma\}]\frac{\theta_{-1/\tau}(-\sigma/\tau)}{(e(-1/\tau);e(-1/\tau))_{\infty}^{2}}\delta_{\tau}(-\omega+\sigma+x-u)t_{\omega,x}^{-1},$ $M_{\tau}[\pi_{0}[x^{-}(\tau;u$ $= \exp[-\pi i\{\frac{\sigma^{2}}{\tau}+(\frac{1}{\tau}-1)\sigma\}]\frac{\theta_{-1/\tau}(\sigma/\tau)}{(e(-1/\tau);e(-1/\tau))_{\infty}^{2}}\delta_{\tau}(\sigma+x-u^{k})t_{\omega,x},$ $M_{\tau}[\pi_{0}[\psi^{+}(\tau;u$ $= \exp[2\pi i\frac{\sigma(\omega-\sigma)}{\tau}]\frac{\theta_{-1/\tau}((x-u)/\tau)\theta_{-1/\tau}((-\omega+2\sigma+x-u)/\tau)}{\theta_{-1/\tau}((\sigma+x-u)/\tau)\theta_{-1/\tau}((-\omega+\sigma+x-u)/\tau)},$ $M_{\tau}[\pi_{0}[\psi^{-}(\tau;u$ $= \exp[2\pi i\frac{\sigma(\omega-\sigma)}{\tau}]\frac{\theta_{-1/\tau}((-x+u)/\tau)\theta_{-1/\tau}((\omega-2\sigma-x+u)/\tau)}{\theta_{-1/\tau}((-\sigma-x+u)/\tau)\theta_{-1/\tau}((\omega-\sigma-x+u)/\tau)}.$ $\delta_{\tau}(u):=\sum_{n\in \mathbb{z}}e(nu/\tau)$ modular $M_{\tau}$

10 ( modular ). $\omega,$ $\sigma,$ $x$ $r$ $(r\in \mathbb{r})$, $rarrow 0$ 2.3 Ding-Iohara-Miki modular $M_{\tau}[ \pi_{0}[x^{+}(\tau;u arrow\exp(\pi i\frac{\sigma}{\tau})[1-e(-\sigma/\tau)]\delta_{\tau}(-\omega+\sigma+x-u)t_{\omega,x}^{-1}$, (2.1) $M_{\tau}[ \pi_{0}[x^{-}(\tau;u arrow\exp(-\pi i\frac{\sigma}{\tau})[1-e(\sigma/\tau)]\delta_{\tau}(\sigma+x-u)t_{\omega,x}$, (2.2) $M_{\tau}[ \pi_{0}[\psi^{+}(\tau;u arrow\frac{[1-e((x-u)/\tau)][1-e((-\omega+2\sigma+x-u)/\tau)]}{[1-e((\sigma+x-u)/\tau)][1-e((-\omega+\sigma+x-u)/\tau)]},$ (2.3) $M_{\tau}[ \pi_{0}[\psi^{-}(\tau;u arrow\frac{[1-e((-x+u)/\tau)][1-e((\omega-2\sigma-x+u)/\tau)]}{[1-e((-\sigma-x+u)/\tau)][1-e((\omega-\sigma-x+u)/\tau)]}$. (2.4) 2.4 Ding-Iohara-Miki $\omega$ Miki $\mathcal{u}(\tau, \sigma,\omega)$ ( $\omega$ ) $\mathcal{u}(\omega/\tau, \sigma/\tau)$ Ding-Iohara- $(\omega$ ) modular : $M_{\omega}[ \pi_{0}[x^{+}(\omega;u arrow\exp(\pi i\frac{\sigma}{\omega})[1-e(-\sigma/\omega)]\delta_{\omega}(-\tau+\sigma+x-u)t_{\tau,x}^{-1}$, (2.5) $M_{\omega}[ \pi_{0}[x^{-}(\omega;u arrow\exp(-\pi i\frac{\sigma}{\omega})[1-e(\sigma/\omega)]\delta_{\omega}(\sigma+x-u)t_{\tau,x}$, (2.6) $[ \pi_{0}[\psi^{+}(\omega;u arrow\frac{[1-e((x-u)/\omega)][1-e((-\tau+2\sigma+x-u)/\omega)]}{[1-e((\sigma+x-u)/\omega)][1-e((-\tau+\sigma+x-u)/\omega)]},$ (2.7) $M_{\omega}[ \pi_{0}[\psi^{-}(\omega;u arrow\frac{[1-e((-x+u)/\omega)][1-e((\tau-2\sigma-x+u)/\omega)]}{[1-e((-\sigma-x+u)/\omega)][1-e((\tau-\sigma-x+u)/\omega)]}$. (2.8) Ding-Iohara-Miki $\mathcal{u}(\tau/\omega, \sigma/\omega)$ (2.1) $\sim(2.4)$ $\mathcal{u}(\omega/\tau, \sigma/\tau)$ (2.5) $\sim(2.8)$ $\mathcal{u}(\tau/\omega, \sigma/\omega)$ 2 2

11 $\bullet$ $\bullet$ 43 (1) Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ modular Ding-Iohara-Miki $\mathcal{u}(\omega/\tau, \sigma/\tau)$ (2) (1) $\omega$ Ding-Iohara- Miki $\mathcal{u}(\tau/\omega, \sigma/\omega)$ (3) (1), (2) 2 $\omegarightarrow\tau$ Miki modular double $\mathcal{u}(\omega/\tau, Ding-Iohara- $\omegarightarrow\tau$ \sigma/\tau)\otimes \mathcal{u}(\tau/\omega, \sigma/\omega)$ modular double modular Ding-Iohara-Miki $\mathcal{u}(\omega, \sigma, \tau)$ $\mathcal{u}(\omega, \sigma, \tau)$ modular $\mathcal{u}(\omega, \sigma, \tau)$ $\mathcal{u}(\omega, \sigma, \tau)$ modular $\omega,$ $\sigma,$ Ding-Iohara-Miki modular double RIMS Conference 2015 [DI] J. Ding, K. Iohara. Generalization of Drinfeld quantum affine algebras. Lett. Math. Phys. 41 (1997), no. 2, [F] L. Faddeev. Modular double of quantum group. (1999) $arxiv:math/ $

12 44 [FHHSY] B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, S. Yanagida. A commutative algebra on degenerate $\mathbb{c}\mathbb{p}^{1}$ (2009) $arxiv: $ and Macdonald polynomials. J. Math. Phys. 50 [FO] B. Feigin, A. Odesskii. A family of elliptic algebras. (1997) Internat. Math. Res. Notices. no.ll. [FV] G. Felder, A. Varchenko. The Elliptic Gamma Function and. Advances in Mathematics (2000): $SL(3, \mathbb{z})\ltimes \mathbb{z}^{3}$ [Ip] Ivan C. H. Ip. Positive representations of split real quantum groups : the universal $R$ operator. (2012) $arxiv: $ [K] (2013) ISBN [KNS] Y. Komori, M. Noumi, J. Shiraishi. Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications. Volume 5 (2009) $arxiv: $ [Mac] I. G. Macdonald. Symmetric functions and Hall polynomials. 2nd edition, Oxford University Press (1995). [Miki] K. Miki. $A(q, \gamma)$ analog of the $W_{1+\infty}$ algebra. J. Math. Phys. 48, ; $doi: / $ (2007). [Naru] A. Narukawa. The modular properties and the integral representations of the multiple elliptic gamma functions. (2003) $arxiv:math/ $ [NT] I. Nidaiev, J. Teschner. On the relation between the modular double $of\mathcal{u}_{q}(\mathfrak{s}\mathfrak{l}(2, and the quantum Teichm\"uller theory. (2013) $arxiv: $ \mathbb{r}))$ [R1] S. N. M. Ruijsenaars. Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Physic. Volume 110. (1987). [R2] S. N. M. Ruijsenaars. Zero-eigenvalue eigenfunctions for differences of elliptic relativistic Calogero-Moser Hamiltonians. Theoretical and mathematical physics (2006): [Sal] Yosuke Saito. Elliptic Ding-Iohara algebra and the free field realization of the elliptic Macdonald operator. Publ. Res. Inst. Math. Sci. 50 (2014), doi: 10.$4171/PRIMS/139,$ $arxiv: $ [Sa2] Yosuke Saito. Commutative families of the elliptic Macdonald operator. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 10 (2014): 021. arxiv:

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W

2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W SGC -83 2 2 Belavin Polyakov Zamolodchikov (BPZ) 1984 [13] 2 BPZ BPZ 1 3 4 Virasoro [16][18] [20], [30], [47] [1][6] [8][10], [11], [12] Affine [6],GKO [2] W [14] c = 1 CFT [8] Rational CFT [15], [56]

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half Wess-Zumino-Witten 1999 3 18 Wess-Zumino-Witten., Knizhnik-Zamolodchikov-Bernard,,. 1 Affine Lie 2 1.1 Affine Lie.............................. 2 1.2..................................... 3 2 WZW 4 3 Knizhnik-Zamolodchikov-Bernard

More information

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot 外力項付常微分方程式の周期解および漸近周期解の初期 Title値問題について ( 力学系 : 理論から応用へ 応用から理論へ ) Author(s) 野原, 勉 ; 有本, 彰雄 Citation 数理解析研究所講究録 (2011), 1742: 108-118 Issue Date 2011-05 URL http://hdl.handle.net/2433/170924 Right Type Departmental

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or

BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or 1218 2001 15-25 15 BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $oro$ $\mathbb{c}$-vector space Vir $=\oplus \mathbb{c}l_{n}n\in

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似)

共役類の積とウィッテンL-関数の特殊値との関係について (解析的整数論 : 数論的対象の分布と近似) 数理解析研究所講究録第 2013 巻 2016 年 1-6 1 共役類の積とウィッテン \mathrm{l} 関数の特殊値との関係に ついて 東京工業大学大学院理工学研究科数学専攻関正媛 Jeongwon {\rm Min} Department of Mathematics, Tokyo Institute of Technology * 1 ウィツテンゼータ関数とウィツテン \mathrm{l}

More information

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin $2_{\text{ }}$ weight 1103 1999 187-199 187 Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible lifting $([\mathrm{k}\mathrm{u}])$ 1980 Maass [Ma2], Andrianov

More information

数理解析研究所講究録 第1921巻

数理解析研究所講究録 第1921巻 1921 2014 108-121 108 Local state, sector theory and measurement in AQFT 1 1 () $($local state) (quantum operation) ( RIMS ) () [25] ( [22] ) [5, 35, 36] 2 : $c*$ - $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α 2018 : 2018 21 msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald 1.1. Weyl Demazure. g, h Cartan, Q := i I Zα i h root lattice, Q + := i I Z 0α i Q, P := i I Zϖ i h g weight lattice ;, ϖ i h, i I,

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理)

点集合置換法による正二十面体対称準周期タイリングの作成 (準周期秩序の数理) 1725 2011 1-14 1 (Nobuhisa Fujita) Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 1. (Dirac peak) (Z-module) $d$ (rank) $r$ r $\backslash$ (Bravais lattice) $d$ $d$ $r$

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

2017 02 18 1 3 1.1............................... 4 1.2............................. 5 1.3 Minimum Output Entropy /........ 7 2 10 2.1 Asymptotic Geometric Analysis......... 11 2.2.................. 17

More information

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開)

自動残差修正機能付き GBiCGSTAB$(s,L)$法 (科学技術計算アルゴリズムの数理的基盤と展開) 1733 2011 149-159 149 GBiCGSTAB $(s,l)$ GBiCGSTAB(s,L) with Auto-Correction of Residuals (Takeshi TSUKADA) NS Solutions Corporation (Kouki FUKAHORI) Graduate School of Information Science and Technology

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

$)\triangleleft\hat{g}$ $\mathcal{t}\mathcal{h}$ 106 ( ) - Einstein ( ) ( ) $R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}r=\kappa T_{\mu\nu}$ bottom-up feedback

$)\triangleleft\hat{g}$ $\mathcal{t}\mathcal{h}$ 106 ( ) - Einstein ( ) ( ) $R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}r=\kappa T_{\mu\nu}$ bottom-up feedback duality 1532 2007 105-117 105 - $-*$ (Izumi Ojima) Research Institllte for Mathematical Sciences Kyoto University 1? 3 ( 2-4 ) 1507 RIMS. ( ) (2006 6 28 30 ). $+\mathrm{f}_{\mathrm{o}\mathrm{l}1\gamma}\mathrm{i}\mathrm{e}\mathrm{r}$

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野 勝利 Citation 数理解析研究所講究録 (2001) 1238: 1-11 Issue Date 2001-11 URL http://hdlhandlenet/2433/41569 Right Type Departmental Bulletin

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

On moments of the noncentral Wishart distributions and weighted generating functions of matchings (Combinatorial Representation Theory and its Applica

On moments of the noncentral Wishart distributions and weighted generating functions of matchings (Combinatorial Representation Theory and its Applica $\triangle$ 1738 2011 142-154 142 On moments of the noncentral Wishart distributions and weighted generating functions of matchings ( JST CREST) Wishart ( )Wishart determinant Hafnian analogue ( $)$Wishart

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

main.dvi

main.dvi Nim naito@math.nagoya-u.ac.jp,.,.,,,.,,,,,,, Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:. August 10-11, 1999 2 1 Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N

More information

名称未設定

名称未設定 ISSN 88 64 Tottori Journal for Research in Mathematics Education http://www.rs.tottori-u.ac.jp/mathedu The Rational Number Project RNP Textbook Yoshikazu Tamaki vol.7, no. Mar. 05 F P (& p y t l p k y

More information

SOWC04....

SOWC04.... 99 100 101 2004 284 265 260 257 235 225 222 211 207 205 200 197 192 190 183 183 183 183 180 176 171 169 166 165 156 152 149 143 141 141 138 138 136 126 126 125 123 123 122 118 110 109 108 107 107 105 100

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

一般相対性理論に関するリーマン計量の変形について

一般相対性理論に関するリーマン計量の変形について 1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$

More information

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:-

$\mathrm{c}_{j}$ $u$ $u$ 1: (a) (b) (c) $y$ ($y=0$ ) (a) (c) $i$ (soft-sphere) ( $m$:(mj) $\sigma$:(\sigma j) $i$ $(r_{1j}.$ $j$ $r_{i}$ $r_{j}$ $=r:- 1413 2005 60-69 60 (Namiko Mitarai) Frontier Research System, RIKEN (Hiizu Nakanishi) Department of Physics, Faculty of Science, Kyushu University 1 : [1] $[2, 3]$ 1 $[3, 4]$.$\text{ }$ [5] 2 (collisional

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

untitled

untitled C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

本文/報告2

本文/報告2 Integral Three Dimensional Image with Enhanced Horizontal Viewing Angle Masato MIURAJun ARAITomoyuki MISHINA and Yuichi IWADATE ABSTRACT NHK R&D/No.144/2014.3 37 38 NHK R&D/No.144/2014.3 p w h f w h p

More information

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W , 2000 pp72-87 $\overline{n}b_{+}/b_{+}$ e-mail: ikeka@math scikumamoto-uacjp September 27, 2000 \S 1 Introduction $\#_{dt}^{1}d^{2}=\exp(q_{2}-q_{1})$ $arrow_{dt}^{d^{2}}2=\exp(q_{3}-q_{2})-\exp(q_{2}-q_{1})$

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原 A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原, 辰次 Citation 数理解析研究所講究録 (2004), 1395: 231-237 Issue

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

200708_LesHouches_02.ppt

200708_LesHouches_02.ppt Numerical Methods for Geodynamo Simulation Akira Kageyama Earth Simulator Center, JAMSTEC, Japan Part 2 Geodynamo Simulations in a Sphere or a Spherical Shell Outline 1. Various numerical methods used

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

本文/報告2

本文/報告2 1024 QAM Demodulator Robust to Phase Noise of Cable STB Tuners Takuya KURAKAKE, Naoyoshi NAKAMURA and Kimiyuki OYAMADA ABSTRACT NHK R&D/No.127/2011.5 41 42 NHK R&D/No.127/2011.5 a ka k I a Q kk a k a I

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information