CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

Size: px
Start display at page:

Download "CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン"

Transcription

1 CUDA 画像処理入門 エヌビディアジャパン CUDA エンジニア森野慎也 GTC Japan 2014

2 CUDA を用いた画像処理 画像処理を CUDA で並列化 基本的な並列化の考え方 目標 : 妥当な Naïve コードが書ける 最適化の初歩がわかる ブロックサイズ メモリアクセスパターン

3 RGB Y( 輝度 ) 変換 カラー画像から グレイスケールへの変換 Y = R G B

4 CUDA における画像処理の基礎 2 次元メモリ確保 API Pitch を考慮 cudamallocpitch() cudamemcpy2d() 並列化 CUDA の並列度 : 数万以上欲しい Kepler での目安 : CUDA Core 数 x 10 程度 ( 最低限 )

5 PITCH を考慮したメモリレイアウト RGBA(8 bit, uchar4) の配列 index = x + y * pitchinpixel pitchinpixel = pitchinbyte / sizeof(uchar4) width (x, y)

6 2 次元メモリ確保 転送 cudaerror_t cudamallocpitch ( void** devptr, size_t* pitch, size_t width, size_t height ) width バイトのメモリを height 行分 取得する 行は pitch バイトで整列する cudaerror_t cudamemcpy2d ( void* dst, size_t dpitch, const void* src, size_t spitch, size_t width, size_t height, cudamemcpykind kind ) dst で示されるメモリ (dpitch バイトで整列 ) に src で示されるメモリ (spitch バイトで整列 ) を width ( バイト ) x height ( 行 ) コピーする

7 サンプルコード uchar4 *src, *dimage; size_t spitch, dpitch, dpitchinpixel; // ピッチつきで メモリをアロケート cudamallocpitch(&dimage, *dpitch, width * sizeof(uchar4), height); dpitchinpixel = dpitch / sizeof(uchar4); // ピッチを変換しつつ ホスト デバイスへと メモリ転送 cudamemcpy2d(dimage, dpitch, src, spitch, width * sizeof(uchar4), height, cudamemcpyhosttodevice);

8 画像処理における並列化の基本 基本 : 1 ピクセルに対して 1 スレッドを対応させる ピクセル数分 スレッドが走る 例 : 262,144 (= 512 x 512) スレッド スレッドは 処理対象のピクセルを持つ 自分の位置 (x, y) を知ることが必要

9 2D での BLOCK THREAD の割り当て 1 Thread : 2 次元 でピクセルに対応 Grid 1 Pixel = 1 Thread (x, y) = (Global ID X, Global ID Y) : 2 次元 で定義 一定のサイズのタイル : 必要数の を 2 次元 に敷き詰める

10 2D での BLOCK THREAD の割り当て blockdim.x * blockidx.x threadidx.x blockdim.y * blockidx.y threadidx.y GlobalID は (x, y, z) 方向に計算できる GlobalID(x) = blockdim.x * blockidx.x + threadidx.x GlobalID(y) = blockdim.y * blockidx.y + threadidx.y GlobalID(z) = blockdim.z * blockidx.z + threadidx.z

11 RGB Y 変換カーネル global void RGBToYKernel(uchar4 *ddst, const uchar4 *dsrc, int width, int height, int pitch){ int gidx = blockdim.x * blockidx.x + threadidx.x; int gidy = blockdim.y * blockidx.y + threadidx.y; } if ((gidx < width) && (gidy < height)) { int pos = gidx + gidy * pitch; // Y = R G B uchar4 value = src[pos]; float Y = 0.299f * value.x f * value.y f * value.z; unsigned char y = (unsigned char)min(255, (int)y); ddst[pos ] = pixel; }

12 カーネル呼び出し (GRID サイズ指定 ) /* value radix で割って 切り上げる */ int divroundup(int value, int radix) { return (value + radix 1) / radix; } /* griddim, blockdim を 2 次元 (x, y 方向 ) に初期化 */ dim3 blockdim(64, 2); /* divroundup() は 切り上げの割り算 */ dim3 griddim(divroundup(width, blockdim.x), divroundup(height, blockdim.y)); RGBToYKernel<<<gridDim, blockdim>>>(ddst, dsrc, );

13 悪い並列化の例 Thread 0 Thread 1 Thread 2 Thread 3 GPU の並列化としては NG 非常に低速 並列度が低い メモリアクセスパターンが悪い ただし CPU 的発想としてはふつう

14 ここはポイント! コアレス (COALESCED) アクセス Thread : Memory : threadidx.x 連続するスレッドが 連続するメモリにアクセスする threadidx.x に対して 連続

15 再掲 : 2D での BLOCK THREAD の割り当て blockdim.x * blockidx.x threadidx.x blockdim.y * blockidx.y threadidx.y GlobalID は (x, y, z) 方向に計算できる GlobalID(x) = blockdim.x * blockidx.x + threadidx.x GlobalID(y) = blockdim.y * blockidx.y + threadidx.y GlobalID(z) = blockdim.z * blockidx.z + threadidx.z

16 動かしてみる

17 FAQ : BLOCKDIM の決め方 1. Occupancy ( 占有率 ) を 100 % にする 2. あたりのスレッド数は なるべく小さく 3. 横方向は コアレスアクセス なるべく 長くする

18 BLOCKDIM の決め方 (OCCUPANCY から ) 項目 値 最大の 数 / SMX 16 最大のThread 数 / SMX 2048 最大のThread 数 / 1024 SMX あたり 2048 Thread 走らせたい Occupancy ( 占有率 ) = 100 % Occupancy = 100 % を満たす あたりのスレッド数は 2048 Thread / 16 = 128 Thread / 2048 Thread / 8 = 256 Thread / 2048 Thread / 4 = 512 Thread / 2048 Thread / 2 = 1024 Thread /

19 BLOCKDIM の決め方 (BLOCK の粒度から ) Grid = 4096 Thread の実行例を考えてみる : 256 Thread 1024 Threadで比較 3 SMX / GPU 1 SMXあたり 1 が実行可能とする SMX 0 SMX 1 SMX Thread / t SMX 0 SMX 1 SMX Thread / サイズは小さいほうが得 128 Threads / t

20 BLOCKDIM の決め方 (SMX の構造から ) Warp Scheduler x 4 : 1 clock あたり 4 Warp に対する命令発行 のサイズは 128 Thread の倍数が望ましい (128 Thread = 32 Thread/Warp x 4 Warp)

21 タイルは横長がよい タイルの横幅は 32(Warp の幅 ) の倍数がよい 32 より小さい場合 16 もしくは 8 を使う Thread : Memory : threadidx.x

22 blockdim.y RGB Y 変換時のバンド幅 : TESLA K20C blockdim.x Occupancy < 100 % 値 - : バンド幅 - (GB/sec) blockdim.x - - < Tesla - K20c - (ECC - off) -

23 まとめ 画像処理における CUDA Pitch を考慮したメモリレイアウト 2 次元の Grid の呼び出し 正しい Naïve コード ( カーネル ) の書き方 コアレスアクセス ピクセルごとに スレッドを割り当てる 並列度は 数万以上 サイズは 128 が適当 ( 単純なカーネルの場合 )

1. マシンビジョンにおける GPU の活用

1. マシンビジョンにおける GPU の活用 CUDA 画像処理入門 GTC 213 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. マシンビジョンにおける GPU の活用 1. 医用画像処理における GPU の活用 CT や MRI から画像を受信して三次元画像の構築をするシステム 2 次元スキャンデータから 3 次元 4 次元イメージの高速生成 CUDA 化により画像処理速度を約 2 倍に高速化 1. CUDA で画像処理

More information

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin

1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境 Lin Windows で始める CUDA 入門 GTC 2013 チュートリアル エヌビディアジャパン CUDA エンジニア森野慎也 1. GPU コンピューティング GPU コンピューティング GPUによる 汎用コンピューティング GPU = Graphics Processing Unit CUDA Compute Unified Device Architecture NVIDIA の GPU コンピューティング環境

More information

Slide 1

Slide 1 CUDA プログラミングの基本 パート II - カーネル CUDA の基本の概要 パート I CUDAのソフトウェアスタックとコンパイル GPUのメモリ管理 パート II カーネルの起動 GPUコードの具体像 注 : 取り上げているのは基本事項のみです そのほか多数の API 関数についてはプログラミングガイドを ご覧ください GPU 上でのコードの実行 カーネルは C 関数 + 多少の制約 ホストメモリはアクセスできない戻り値型は

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU プログラミング環境 (CUDA) GPU プログラムの実行の流れ CUDA によるプログラムの記述 カーネル (GPU で処理する関数 ) の構造 記述方法とその理由 GPU 固有のパラメータの確認 405 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ

More information

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014

ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 ストリームを用いたコンカレントカーネルプログラミングと最適化 エヌビディアジャパン CUDAエンジニア森野慎也 GTC Japan 2014 コンカレントな処理の実行 システム内部の複数の処理を 平行に実行する CPU GPU メモリ転送 カーネル実行 複数のカーネル間 ストリーム GPU 上の処理キュー カーネル実行 メモリ転送の並列性 実行順序 DEFAULT STREAM Stream : GPU

More information

07-二村幸孝・出口大輔.indd

07-二村幸孝・出口大輔.indd GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia

More information

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU.....

1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU..... CPU GPU N Q07-065 2011 2 17 1 1 4 1.1........................................... 4 1.2.................................. 4 1.3................................... 4 2 5 2.1 GPU...........................................

More information

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Slides: TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments 計算機アーキテクチャ第 11 回 マルチプロセッサ 本資料は授業用です 無断で転載することを禁じます 名古屋大学 大学院情報科学研究科 准教授加藤真平 デスクトップ ジョブレベル並列性 スーパーコンピュータ 並列処理プログラム プログラムの並列化 for (i = 0; i < N; i++) { x[i] = a[i] + b[i]; } プログラムの並列化 x[0] = a[0] + b[0];

More information

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx

Microsoft PowerPoint - GPGPU実践基礎工学(web).pptx GPU のメモリ階層 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のメモリ階層 グローバルメモリ 共有メモリ モザイク処理への適用 コンスタントメモリ 空間フィルタへの適用 577 GPU の主要部品 基盤 GPU( チップ )+ 冷却部品 画面出力端子 電源入力端子 メモリ 特性の把握が重要 電源入力端子 画面出力端子 メモリ チップ PCI Ex 端子 http://www.geforce.com/whats

More information

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として) Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA

3次多項式パラメタ推定計算の CUDAを用いた実装 (CUDAプログラミングの練習として)  Implementation of the Estimation of the parameters of 3rd-order-Polynomial with CUDA 3 次多項式パラメタ推定計算の CUDA を用いた実装 (CUDA プログラミングの練習として ) Estimating the Parameters of 3rd-order-Polynomial with CUDA ISS 09/11/12 問題の選択 目的 CUDA プログラミングを経験 ( 試行錯誤と習得 ) 実際に CPU のみの場合と比べて高速化されることを体験 問題 ( インプリメントする内容

More information

CUDA基礎1

CUDA基礎1 CUDA 基礎 1 東京工業大学 学術国際情報センター 黄遠雄 2016/6/27 第 20 回 GPU コンピューティング講習会 1 ヘテロジニアス コンピューティング ヘテロジニアス コンピューティング (CPU + GPU) は広く使われている Financial Analysis Scientific Simulation Engineering Simulation Data Intensive

More information

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1

GPU GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 GPU 4 2010 8 28 1 GPU CPU CPU CPU GPU GPU N N CPU ( ) 1 GPU CPU GPU 2D 3D CPU GPU GPU GPGPU GPGPU 2 nvidia GPU CUDA 3 GPU 3.1 GPU Core 1 Register & Shared Memory ( ) CPU CPU(Intel Core i7 965) GPU(Tesla

More information

Slide 1

Slide 1 GPUコンピューティング入門 2015.08.26 エヌビディア合同会社 CUDAエンジニア 村上真奈 エヌビディアのGPUについて (20 分 ) GPUコンピューティングとは?(10 分 ) OpenACC 入門 (90 分 ) CUDA 入門 (90 分 ) Agenda 2 エヌビディアのGPUについて (20 分 ) GPUコンピューティングとは?(10 分 ) OpenACC 入門 (90

More information

CUDA 連携とライブラリの活用 2

CUDA 連携とライブラリの活用 2 1 09:30-10:00 受付 10:00-12:00 Reedbush-H ログイン GPU 入門 13:30-15:00 OpenACC 入門 15:15-16:45 OpenACC 最適化入門と演習 17:00-18:00 OpenACC の活用 (CUDA 連携とライブラリの活用 ) CUDA 連携とライブラリの活用 2 3 OpenACC 簡単にGPUプログラムが作成できる それなりの性能が得られる

More information

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓

GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 GPU のアーキテクチャとプログラム構造 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 GPU のアーキテクチャ CUDA CUDA によるプログラミング 58 GPU(Graphics Processing Unit) とは 画像処理専用のハードウェア 具体的には画像処理用のチップ チップ単体では販売されていない PCI Ex カードで販売 ( チップ単体と区別せずに GPU と呼ぶことも多い

More information

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速

DO 時間積分 START 反変速度の計算 contravariant_velocity 移流項の計算 advection_adams_bashforth_2nd DO implicit loop( 陰解法 ) 速度勾配, 温度勾配の計算 gradient_cell_center_surface 速 1 1, 2 1, 2 3 2, 3 4 GP LES ASUCA LES NVIDIA CUDA LES 1. Graphics Processing Unit GP General-Purpose SIMT Single Instruction Multiple Threads 1 2 3 4 1),2) LES Large Eddy Simulation 3) ASUCA 4) LES LES

More information

Microsoft PowerPoint - suda.pptx

Microsoft PowerPoint - suda.pptx GPU の HWアーキテクチャと高性能化手法 須田礼仁 ( 東京大学 ) 2011/03/22 GPU 高性能プログラミング GPU のハードウェアを理解する CUDA のソフトウェアを理解する CUDA でプログラムを書くのは難しくないが, CUDA で高速なプログラムを書くのは難しい どうすれば遅くなるかを理解する! 効果が大きいものから順に説明します 1 高性能プログラミングの手順 1. 現在のコードの,

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 総機 1 ( 月 1) 11: 動的メモリ確保 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2015-06-22 1 まとめ : ポインタを使った処理 内容 説明 呼び出し元の変数を書き換える第 9 回 文字列を渡す 配列を渡す 第 10 回 ファイルポインタ

More information

GPGPUクラスタの性能評価

GPGPUクラスタの性能評価 2008 年度理研 HPC シンポジウム第 3 世代 PC クラスタ GPGPU クラスタの性能評価 2009 年 3 月 12 日 富士通研究所成瀬彰 発表の概要 背景 GPGPU による高速化 CUDA の概要 GPU のメモリアクセス特性調査 姫野 BMT の高速化 GPGPU クラスタによる高速化 GPU Host 間のデータ転送 GPU-to-GPU の通信性能 GPGPU クラスタ上での姫野

More information

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla

IPSJ SIG Technical Report Vol.2013-HPC-138 No /2/21 GPU CRS 1,a) 2,b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla GPU CRS 1,a),b) SpMV GPU CRS SpMV GPU NVIDIA Kepler CUDA5.0 Fermi GPU Kepler Kepler Tesla K0 CUDA5.0 cusparse CRS SpMV 00 1.86 177 1. SpMV SpMV CRS Compressed Row Storage *1 SpMV GPU GPU NVIDIA Kepler

More information

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation

熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date Type URL Presentation 熊本大学学術リポジトリ Kumamoto University Repositor Title GPGPU による高速演算について Author(s) 榎本, 昌一 Citation Issue date 2011-03-17 Type URL Presentation http://hdl.handle.net/2298/23539 Right GPGPU による高速演算について 榎本昌一 東京大学大学院工学系研究科システム創成学専攻

More information

一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report A P (2014-6) FDTD 法の並列化技術とオープンソ

一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report A P (2014-6) FDTD 法の並列化技術とオープンソ 一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS 信学技報 IEICE Technical Report A P204-4(204-6) FDTD 法の並列化技術とオープンソース化 大賀明夫株式会社 EEM E-mail: [email protected] あらまし FDTD 法の各種並列化技術について説明し実装する

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 2 ( 月 4) 11: 動的メモリ確保 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/ teachers/w483692/cpr1/ 2014-06-22 1 まとめ : ポインタを使った処理 内容 説明 呼び出し元の変数を書き換える第 9 回 文字列を渡す 配列を渡す 第 10 回 ファイルポインタ

More information

いまからはじめる組み込みGPU実装

いまからはじめる組み込みGPU実装 いまからはじめる組み込み GPU 実装 ~ コンピュータービジョン ディープラーニング編 ~ MathWorks Japan アプリケーションエンジニアリング部シニアアプリケーションエンジニア大塚慶太郎 2017 The MathWorks, Inc. 1 コンピュータービジョン ディープラーニングによる 様々な可能性 自動運転 ロボティクス 予知保全 ( 製造設備 ) セキュリティ 2 転移学習を使った画像分類

More information

画像ファイルを扱う これまでに学んだ条件分岐, 繰り返し, 配列, ファイル入出力を使って, 画像を扱うプログラムにチャレンジしてみよう

画像ファイルを扱う これまでに学んだ条件分岐, 繰り返し, 配列, ファイル入出力を使って, 画像を扱うプログラムにチャレンジしてみよう 第 14 回 応用 情報処理演習 ( テキスト : 第 10 章 ) 画像ファイルを扱う これまでに学んだ条件分岐, 繰り返し, 配列, ファイル入出力を使って, 画像を扱うプログラムにチャレンジしてみよう 特定色の画素の検出 ( テキスト 134 ページ ) 画像データが保存されているファイルを読み込んで, 特定色の画素の位置を検出するプログラムを作成しなさい 元画像生成画像 ( 結果の画像 )

More information

( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I

(    CUDA CUDA CUDA CUDA (  NVIDIA CUDA I GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA

More information

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran

概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran CUDA Fortran チュートリアル 2010 年 9 月 29 日 NEC 概要 目的 CUDA Fortran の利用に関する基本的なノウハウを提供する 本チュートリアル受講後は Web 上で公開されている資料等を参照しながら独力で CUDA Fortran が利用できることが目標 対象 CUDA Fortran の利用に興味を抱いている方 前提とする知識 Fortran を用いた Linux

More information

Microsoft PowerPoint - GPU_computing_2013_01.pptx

Microsoft PowerPoint - GPU_computing_2013_01.pptx GPU コンピューティン No.1 導入 東京工業大学 学術国際情報センター 青木尊之 1 GPU とは 2 GPGPU (General-purpose computing on graphics processing units) GPU を画像処理以外の一般的計算に使う GPU の魅力 高性能 : ハイエンド GPU はピーク 4 TFLOPS 超 手軽さ : 普通の PC にも装着できる 低価格

More information

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト

GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 理化学研究所 共通コードプロジェクト GPU チュートリアル :OpenACC 篇 Himeno benchmark を例題として 高エネルギー加速器研究機構 (KEK) 松古栄夫 (Hideo Matsufuru) 1 December 2018 HPC-Phys 勉強会 @ 理化学研究所 共通コードプロジェクト Contents Hands On 環境について Introduction to GPU computing Introduction

More information

VOLTA AND TURING: ARCHITECTURE Akira Naruse, Developer Technology, 2018/9/14

VOLTA AND TURING: ARCHITECTURE Akira Naruse, Developer Technology, 2018/9/14 VOLTA AND TURING: ARCHITECTURE AND PERFORMANCE OPTIMIZATION Akira Naruse, Developer Technology, 2018/9/14 VOLTA AND TURING: ARCHITECTURE Akira Naruse, Developer Technology, 2018/9/14 For HPC and Deep Learning

More information

適応フィルタのSIMD最適化

適応フィルタのSIMD最適化 茂木和洋 @ まるも製作所 今回は省略 初めての方は #1 の資料を参照 適応フィルタとは 適応フィルタの問題点 ( 速度面で ) SIMD 比較命令でマスク処理 ベンチマーク 固定のフィルタではなく 入力値によって処理を変更し 最適な結果を求める 例 基準値との差異を閾値と比較して 参照画素として使うか使わないかを切り替える 最小自乗法でフィッティングしてフィルタ係数自体を動的に作成する 他いろいろ

More information

Microsoft Word - paper.docx

Microsoft Word - paper.docx による高速画像処理 名古屋大学大学院情報科学研究科出口大輔, 井手一郎, 村瀬洋 概要 : 本発表では, 近年注目を集めている GP(General Purpose computing on s) の技術に着目し,GP を利用するための開発環境の使い方やプログラミングのノウハウを分かりやすく解説する. GP は を汎用計算に利用しようという試みであり, 現在では物理シミュレーション, 数値計算, 信号解析,

More information

TSUBAMEのTeslaを用いたGPGPU(CUDAの基礎)

TSUBAMEのTeslaを用いたGPGPU(CUDAの基礎) GPU コンピューティング (CUDA) 講習会 CUDA プログラミング基礎 丸山直也 2010/09/13 1 はじめに 本講習では時間の関係上ごくごく基礎的な内容のみをとりあげます ただし 資料の後半にはメモリアクセスなどに関するチューニングに向けた情報をのせてあります それらは講習時間内には取り上げません チューニングやよりアドバンストな内容の講習会は別途開催しております 本講習で取り上げる概念等は基礎的なものに限られるため

More information

de:code 2019 CM04 Azure Kinect DK 徹底解説 ~ 進化したテクノロジーとその実装 ~ 技術統括室 千葉慎二 Ph.D.

de:code 2019 CM04 Azure Kinect DK 徹底解説 ~ 進化したテクノロジーとその実装 ~ 技術統括室 千葉慎二 Ph.D. de:code 2019 CM04 Azure Kinect DK 徹底解説 ~ 進化したテクノロジーとその実装 ~ 技術統括室 千葉慎二 Ph.D. Mixed Reality の全体像 Kinect はただのカメラではない 3D 空間の認識 ( 深度 ) 人の全身の動きをとらえる Azure Kinect Development Environment Azure Kinect DK 開発環境

More information

2 09:00-09:30 受付 09:30-12:00 GPU 入門,CUDA 入門 13:00-14:30 OpenACC 入門 + HA-PACS ログイン 14:45-16:15 OpenACC 最適化入門と演習 16:30-18:00 CUDA 最適化入門と演習

2 09:00-09:30 受付 09:30-12:00 GPU 入門,CUDA 入門 13:00-14:30 OpenACC 入門 + HA-PACS ログイン 14:45-16:15 OpenACC 最適化入門と演習 16:30-18:00 CUDA 最適化入門と演習 担当 大島聡史 ( 助教 ) [email protected] 星野哲也 ( 助教 ) [email protected] 質問やサンプルプログラムの提供についてはメールでお問い合わせください 1 2016 年 6 月 8 日 ( 水 ) 東京大学情報基盤センター 2 09:00-09:30 受付 09:30-12:00 GPU 入門,CUDA 入門 13:00-14:30

More information

準備 計算結果を可視化するために OpenGL を 利用する. 2

準備 計算結果を可視化するために OpenGL を 利用する. 2 2. 2 次元粒子法シミュレーション (+ 少しだけ OpenGL) 茨城大学工学部 教授乾正知 準備 計算結果を可視化するために OpenGL を 利用する. 2 OpenGL 3 次元コンピュータグラフィックス用の標準的なライブラリ. 特に CAD やアート, アニメーション分野 ( ゲーム以外の分野 ) で広く利用されている. OpenGL は仕様がオープンに決められており, 企業から独立した団体が仕様を管理している.

More information

(MIRU2010) NTT Graphic Processor Unit GPU graphi

(MIRU2010) NTT Graphic Processor Unit GPU graphi (MIRU2010) 2010 7 889 2192 1-1 905 2171 905 NTT 243 0124 3-1 E-mail: [email protected], [email protected] Graphic Processor Unit GPU graphic processor unit CUDA Fully automatic extraction of

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

ARToolKit プログラムの仕組み 1: ヘッダファイルのインクルード 2: Main 関数 3: Main Loop 関数 4: マウス入力処理関数 5: キーボード入力処理関数 6: 終了処理関数 3: Main Loop 関数 1カメラ画像の取得 2カメラ画像の描画 3マーカの検出と認識

ARToolKit プログラムの仕組み 1: ヘッダファイルのインクルード 2: Main 関数 3: Main Loop 関数 4: マウス入力処理関数 5: キーボード入力処理関数 6: 終了処理関数 3: Main Loop 関数 1カメラ画像の取得 2カメラ画像の描画 3マーカの検出と認識 ARToolKit プログラムの仕組み 1: ヘッダファイルのインクルード 2: Main 関数 3: Main Loop 関数 4: マウス入力処理関数 5: キーボード入力処理関数 6: 終了処理関数 3: Main Loop 関数 1カメラ画像の取得 2カメラ画像の描画 3マーカの検出と認識 4 次の画像のキャプチャ指示 5マーカの信頼度の比較 6マーカの位置 姿勢の計算 7バッファの内容を画面に表示

More information

偏微分方程式の差分計算 長岡技術科学大学電気電子情報工学専攻出川智啓

偏微分方程式の差分計算 長岡技術科学大学電気電子情報工学専攻出川智啓 偏微分方程式の差分計算 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 差分法 階微分 階微分に対する差分法 次元拡散方程式 guplot による結果の表示 分岐の書き方による実行時間の変化 高速化に利用できるいくつかのテクニック 7 前回授業 ビットマップを使った画像処理 配列の 要素が物理的な配置に対応 配列の 要素に物理的なデータが定義 B G R 7 数値計算 ( 差分法 ) 計算機を利用して数学

More information

TSUBAMEのTeslaを用いたGPGPU(CUDAの基礎)

TSUBAMEのTeslaを用いたGPGPU(CUDAの基礎) GPU コンピューティング (CUDA) 講習会 CUDA によるプログラミング基礎 丸山直也 2009/10/28 1 はじめに 本講習会では時間の関係上ごくごく基礎的なことのみをとりあげます ただし 資料の後半にはメモリアクセスなどに関するチューニングに向けた情報をのせてあります それらは講習時間内には取り上げません チューニングやよりアドバンストな内容の講習会は今後 ( 基礎編の需要が一段落してから

More information

02: 変数と標準入出力

02: 変数と標準入出力 C プログラミング入門 基幹 7 ( 水 5) 1 10: ファイル入出力 Linux にログインし 以下の講義ページを開いておくこと http://www-it.sci.waseda.ac.jp/teachers/w48369 2/CPR1/ 2016-06-15 今日の内容 2 標準ライブラリ関数によりファイルの出力を行う画像ファイルの生成を例題として 配列の作成を復習する 文字列の扱いを復習する

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 2018/10/05 竹島研究室創成課題 第 2 回 C 言語演習 変数と演算 東京工科大学 加納徹 前回の復習 Hello, world! と表示するプログラム 1 #include 2 3 int main(void) { 4 printf("hello, world! n"); 5 return 0; 6 } 2 プログラム実行の流れ 1. 作業ディレクトリへの移動 $ cd

More information

第1回 プログラミング演習3 センサーアプリケーション

第1回 プログラミング演習3 センサーアプリケーション C プログラミング - ポインタなんて恐くない! - 藤田悟 [email protected] 目標 C 言語プログラムとメモリ ポインタの関係を深く理解する C 言語プログラムは メモリを素のまま利用できます これが原因のエラーが多く発生します メモリマップをよく頭にいれて ポインタの動きを理解できれば C 言語もこわくありません 1. ポインタ入門編 ディレクトリの作成と移動 mkdir

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション プログラミング応用演習 第 2 回文字列とポインタ 先週のパズルの解説 答え : 全部 p a 1 図の書き方 : p+1 は式であって その値を格納する記憶場所を考えないので 四角で囲まない 2 p+1 同じものを表すいろいろな書き方をしてみましたが パズル以上の意味はありません プログラム中に書くときは p+1 が短くていいんじゃないかな p+1 は 2 の記憶場所 p[1] は 2 に格納されている値

More information

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用

RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用 RX ファミリ用 C/C++ コンパイラ V.1.00 Release 02 ご使用上のお願い RX ファミリ用 C/C++ コンパイラの使用上の注意事項 4 件を連絡します #pragma option 使用時の 1 または 2 バイトの整数型の関数戻り値に関する注意事項 (RXC#012) 共用体型のローカル変数を文字列操作関数で操作する場合の注意事項 (RXC#013) 配列型構造体または共用体の配列型メンバから読み出した値を動的初期化に用いる場合の注意事項

More information

AquesTalk Mac マニュアル

AquesTalk Mac マニュアル AquesTalk Mac マニュアル 2010/1/6 ( 株 ) アクエスト http://www.a-quest.com/ 1. 概要 本文書は 規則音声合成ライブラリ AquesTalk Mac( 以下 AquesTalk ) をアプリケーションに組み込んで使用するためのプログラミングに関して 方法および注意点を示したものです AquesTalk Mac は Win 版の AquesTalk

More information

Insert your Title here

Insert your Title here マルチコア マルチスレッド環境での静的解析ツールの応用 米 GrammaTech 社 CodeSonar によるスレッド間のデータ競合の検出 2013 GrammaTech, Inc. All rights reserved Agenda 並列実行に起因する不具合の摘出 なぜ 並列実行されるプログラミングは難しいのか データの競合 デッドロック どのようにして静的解析ツールで並列実行の問題を見つけるのか?

More information

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日

TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 TSUBAME2.0 における GPU の 活用方法 東京工業大学学術国際情報センター丸山直也第 10 回 GPU コンピューティング講習会 2011 年 9 月 28 日 目次 1. TSUBAMEのGPU 環境 2. プログラム作成 3. プログラム実行 4. 性能解析 デバッグ サンプルコードは /work0/gsic/seminars/gpu- 2011-09- 28 からコピー可能です 1.

More information

gengo1-11

gengo1-11 関数の再帰定義 自然数 n の階乗 n! を計算する関数を定義してみる 引数は整数 返却値も整数 n! = 1*2*3*... * (n 1)*n である ただし 0! = 1 とする int factorial(int n) int i, tmp=1; if( n>0 ) for(i=1; i

More information

WebGL Safari WebGL WebGL Safari Kageyama (Kobe Univ.) / 5

WebGL Safari WebGL WebGL   Safari Kageyama (Kobe Univ.) / 5 04 1 2015.05.12 Kageyama (Kobe Univ.) 2015.05.12 1 / 55 WebGL Safari WebGL WebGL http://www.khronos.org/webgl/ http://www.khronos.org/webgl/wiki/demo_repository Safari Kageyama (Kobe Univ.) 2015.05.12

More information

GPGPUによる高速画像処理

GPGPUによる高速画像処理 GPGPU による高速画像処理 ~ リアルタイム画像処理への挑戦 ~ 名古屋大学大学院情報科学研究科 出口大輔 リアルタイム画像処理 2 3 発表の流れ GPGPU を始める前に GPGPU の基礎知識 CUDA の使い方 CUDA を使う前に プログラミングの予備知識 CUDA を使って Hello World GPGPU にチャレンジ 行列積の計算 テンプレートマッチング ガウシアンフィルタ SIFT

More information

VOLTA ARCHITECTURE DEEP DIVE 成瀬彰, シニアデベロッパーテクノロジーエンジニア, 2017/12/12

VOLTA ARCHITECTURE DEEP DIVE 成瀬彰, シニアデベロッパーテクノロジーエンジニア, 2017/12/12 VOLTA ARCHITECTURE DEEP DIVE 成瀬彰, シニアデベロッパーテクノロジーエンジニア, 2017/12/12 TESLA V100 の概要 Volta Architecture Improved NVLink & HBM2 Volta MPS Improved SIMT Model Tensor Core Most Productive GPU Efficient Bandwidth

More information

AquesTalk プログラミングガイド

AquesTalk プログラミングガイド AquesTalk プログラミングガイド ( 株 ) アクエスト 1. 概要 本文書は 規則音声合成ライブラリ AquesTalk をアプリケーションに組み込んで使用するためのプログラミングに関して 方法および注意点を示したものです AquesTalk には 2 種類のライブラリがあります 音声データをメモリ上に生成するものと サウンドデバイスに出力する 2 種類があります 使用するアプリケーションに応じて選択してください

More information

WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization / 57

WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization / 57 WebGL 2014.04.15 X021 2014 3 1F Kageyama (Kobe Univ.) Visualization 2014.04.15 1 / 57 WebGL OpenGL GLSL Kageyama (Kobe Univ.) Visualization 2014.04.15 2 / 57 WebGL Kageyama (Kobe Univ.) Visualization 2014.04.15

More information

バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科

バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科 バイオプログラミング第 1 榊原康文 佐藤健吾 慶應義塾大学理工学部生命情報学科 ポインタ変数の扱い方 1 ポインタ変数の宣言 int *p; double *q; 2 ポインタ変数へのアドレスの代入 int *p; と宣言した時,p がポインタ変数 int x; と普通に宣言した変数に対して, p = &x; は x のアドレスのポインタ変数 p への代入 ポインタ変数の扱い方 3 間接参照 (

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション プログラミング応用演習 第 2 回文字列とポインタ 先週のパズルの解説 答え : 全部 p a 1 図の書き方 : p+1 は式であって その値を格納する記憶場所を考えないので 四角で囲まない 2 p+1 同じものを表すいろいろな書き方をしてみましたが パズル以上の意味はありません プログラム中に書くときは p+1 が短くていいんじゃないかな p+1 は 2 の記憶場所 p[1] は 2 に格納されている値

More information

CUDA 9 AND MORE 成瀬彰, シニアデベロッパーテクノロジーエンジニア, 2017/12/12

CUDA 9 AND MORE 成瀬彰, シニアデベロッパーテクノロジーエンジニア, 2017/12/12 CUDA 9 AND MORE 成瀬彰, シニアデベロッパーテクノロジーエンジニア, 2017/12/12 CUDA 9 の概要 VOLTA に対応 ライブラリの高速化 Tesla V100 Volta アーキテクチャ Tensor コア NVLink Independent スレッドスケジューリング cublas ( 主に DL 向け ) NPP ( 画像処理 ) cufft ( 信号処理 ) cusolver

More information