弾性定数の対称性について
|
|
|
- りさこ まるこ
- 6 years ago
- Views:
Transcription
1 () by T. oyama
2 () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00, ) ( 0,, 0) ( 00,, ) (, 00, ) ( 0,, 0) ( 00,, ) (, 00, ) ( cos( θ ), cos( θ ), cos( θ )) θ ij j i ( 0,, 0) ( 00,, )
3 ( cos( θ ), cos( θ ), cos( θ )) ( cos( θ ), cos( θ ), cos( θ )) = cos( θ ) + cos( θ ) + cos( θ ) cos( θ ) + cos( θ ) + cos( θ ) cos( θ ) + cos( θ ) + cos( θ ) = (5) () (5)l ij (6) = (6) (6)θ l ij l l ik ik l l = 0( i j) ik l l jk ki ki l l = 0( i j) ki kj = = (7) ll i i = ll + ll + ll = l l = l l + l l + l l + l l + l l + l l = 0 i j l ij (8) (9) = l l (8) ij ik jl = l l k l = l l + l l + l l + l l + l l + l l + l l + l l + l l ij l ik l jl = (9),,
4 - =, =, = Cij l ij = = cos( 0) cos( 90) cos( 90) cos( 90) cos( 0) cos( 90) = cos( 90) cos( 90) cos( 80) (0) (8)(9) = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l () () ij ij () ()
5 = + C + C + C + C + C + C + C + C + C + ( C ) + C + C + ( C ) + ( C ) + ( C ) + C + C + C + C + C + C + C + C + C C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0, C = 0 = + C + C + C + C + C + C + C + C + C + ( C ) + C + C + ( C ) + ( C ) + ( C ) + C = ( C + C + C + C + C + C + C + C + C ) C = 0, C = 0, C = 0, C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0, C = 0, C = 0, C = 0 () () C C C 0 0 C * C C 0 0 C * * C 0 0 C = * * * C C 0 * * * * C 0 * * * * * C () - = = =,, Cij l ij
6 = = cos( 80) cos( 90) cos( 90) 0 0 cos( 90) cos( 0) cos( 90) 0 0 = cos( 90) cos( 90) cos( 0) 0 0 (5) (8)(9) = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l (6) (7) ij ij (6) (7) = + C + C + C + C + C + C + C + C + ( C ) + ( C ) + ( C ) + C + C + ( C ) + C + C + C + C + C + C + C + C + C + C C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0, C = 0 5
7 = + C + C + C + C + C + C + C + C + ( C ) + ( C ) + ( C ) + C + C + ( C ) + C + C = ( C + C + C + C + C + C + C + C + C ) C = 0, C = 0, C = 0, C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0, C = 0, C = 0, C = 0 (8) () C C C C 0 0 * C C C 0 0 * * C C 0 0 = * * * C 0 0 * * * * C C * * * * * C (9) - =, =, = Cij l ij = cos( 0) cos( 90) cos( 90) = cos( 90) cos( 80) cos( 90) = cos( 90) cos( 90) cos( 0) (0) (8)(9) 6
8 = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l () () ij ij () () = + C + C + C + C + C + C + C + C + ( C ) + C + ( C ) + C + ( C ) + C + ( C ) + C + C + C + C + C + C + C + C + C C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0, C = 0 = + C + C + C + C + C + C + C + C + ( C ) + C + ( C ) + C + ( C ) + C + ( C ) + C = ( C + C + C + C + C + C + C + C + C ) C = 0, C = 0, C = 0, C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0 C = 0, C = 0, C = 0, C = 0, C = 0, C = 0, C = 0, C = 0 () 7
9 () C C C 0 C 0 * C C 0 C 0 * * C 0 C 0 = * * * C 0 C * * * * C 0 * * * * * C () ()(9)() C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C (5) =, =, = =, =, = =, =, = - =, =, = l ij = = cos( 90) cos( 0) cos( 90) cos( 80) cos( 90) cos( 90) = cos( 90) cos( 90) cos( 0) (6) (8)(9) 8
10 = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l = l l = l l = k l (7) (8) ij ij (7) (8) = + C + C + C + C + C + C + C + C C, C = + C + C + C + C + C + C + C + C C, C 9
11 = + C + C + C + C + C + C + C + C C = ( C ) = = = C = C = C == = C C C, C, C (9) 0
12 C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C (0) () () C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C 66 () - =, =, = -,, (9),, C, C, C () C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C () - =, =, = -,, (9),, C, C, C ()
13 C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C (5) C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C (6) ()()(5) C C C * C C * * C = * * * C 0 0 * * * * C 0 * * * * * C 66 (7) C C C C C C * C C * C C * * C * * C = = * * * C 0 0 * * * C * * * * C55 0 * * * * C 0 * * * * * C 55 * * * * * C (8)
14 C C C C C C * C C * C C * * C * * C = = * * * C * * * C 0 0 * * * * C55 0 * * * * C66 0 * * * * * C 66 * * * * * C (9) y l ij = = cos( 60) cos( 0) cos( 90) cos( 50) cos( 60) cos( 90) = cos( 90) cos( 90) cos( 0) / / 0 / / (0) (8)(9) = l l = l l + l l + l l + l l = = l l = l l + l l + l l + l l = + = l l = l l = k l = ll = ll + ll = + = l l = l l + l l = + = l l = l l + l l + l l + l l = + + k l ()
15 = l l = l l + l l + l l + l l = = l l = l l + l l + l l + l l = + = l l = l l = k l = ll = ll + ll = + = l l = l l + l l = + = l l = l l + l l + l l + l l = + + () ij ij () () + C + C L = M O P L + M O C C + P + C N Q N b g b g b g + C + C C + C + C + C = + + b g b g bc C Cg C C + C + C + C = = bc + C g + C + bc + C g + bc + C g C, C, C C Q
16 = C C + C = + b g b g b = C + C + C C + C + C + C + C b g b g b g = C C C + C + C + C C C C, C C, C g + C = + + C C C, C, C, C C () C C C * C C * * C = * * * C 0 0 * * * * C 0 C C * * * * * () (5) 5
17 C C C * C C * * C = * * * C 0 0 * * * * C 0 C C * * * * * (5) 6
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....
+ http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46
2.
2. 10 2. 2. 1995/12006/111995/42006/12 2. 10 1995120061119954200612 02505 025 05 025 02505 0303 02505 250100 250 200 100200 5010050 100200 100 100 50100 100200 50100 10 75100100 0250512 02505 1 025051205
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2
5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i
i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6
2 x x, y, z x,, z F c : x x x cos y sin z z 8 F F F F F x x x F x x F 9 F c J Fc J Fc x x x y y y cos sin 0 sin cos 0 0 0, J Fc 0 J Fc t x /x J Fc,, z
The Austalian National Univesity 9 5 F n n 0,, 2, F F ě i F f F g F g 2 ij F F x. ě i F F x i i, 2, 3 2 f i ě i f f x i. 3 g ij ě i g ě j g x i ě j g j x i. 4 g ij g x g 2 x g 3 x g x 2 g 2 x 2 g 3 x 2
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq
7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
○01 那覇市(7月変更)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 H26,2 H28.2 9 9 38 39 40 41 42 43 l ll 44 45 46 47 48 49 50 51 52 53 54 55 2733 14,500 56 57 58 59
1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π
. 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
Taro13-学習ノート表紙.PDF
10 11 12 13 13 14 15 18 22 27 30 32 A B C -1- -2- 1 2 A BC -3- -4- A B C -5- A B C -6- A B C -7- -8- 1-1 1-6 1-2 6-1 1-5 1-3 2-1 6-6 6-2 1-4 2-6 2-2 6-5 6-3 2-5 2-3 6-4 2-4 5-1 3-1 5-6 5-2 3-6 3-2 5-5
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
コンピュータ概論
4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For
プリント
l l l l ll l l l l l l l l l l l 𩸽 l l l l l ll l l l l l l l l l ll l l l l l l l l ll ll l l l l l l ll ll ll l
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit
6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h
2
2 3 4 5 6 4 2 2 2 7 17 10 FM7 11 generalist specialist specialist specialist 12 3 4 3 IC -- Win Win KJ 13 1955 14 1969 1999 32 20 2001 15 16 1 3 3 8 6 17 18 3 3 15 23 19 J () 20 5500 21 2000 23 () (KI)
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3
1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}
iæ~ れる 12~ 守 . Ili~~ ~~ ~H ~~ ij:~ r.~ ~n r~~ ø~ rn~ ~~ g~ ø~ IJ~ I,~ r,~ ~~ f,~ l:l~
2002 11 21 1 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2002 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture [email protected] 2 1. 10/10 2. 10/17 3. 10/24 4. 10/31 5. 11/ 7 6. 11/14
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e
untitled
[email protected] http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d
m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
構造と連続体の力学基礎
12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d
lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
untitled
c 1. 2 2011 2012 0.248 0.252 1 Data Envelopment Analysis DEA 4 2 180 8633 3 3 1 IT DHARMA Ltd. 272 0122 1 14 12 13.10.7 14.5.27 DEA-AR (Assurance Region) 1 DEA 1 1 [1] 2011 2012 220 446 [2] 2. [2] 1 1
A
A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2
Microsoft Word - 教材ガイド一覧ビデオ.doc
V V V V V V V V V V V V 1 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V IT Web CG V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V NO V V V V V
Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4
[2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
layout_H1-H4
KI GOODS CATALOGUE 2012.8 304,500 77,700 7,350 174,700 156,700 71,400 9,450 6,970 7,350 389,550 269,870 251,870 71,400 133,400 9,450 6,970 787 787 294,000 9,450 303,450 612,270 178,500 77,700 140,700 203,700
B ver B
B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G
, ,279 w
No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574
SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ
SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )
