f(x) x S (optimal solution) f(x ) (optimal value) f(x) (1) 3 GLPK glpsol -m -d -m glpsol -h -m -d -o -y --simplex ( ) --interior --min --max --check -

Size: px
Start display at page:

Download "f(x) x S (optimal solution) f(x ) (optimal value) f(x) (1) 3 GLPK glpsol -m -d -m glpsol -h -m -d -o -y --simplex ( ) --interior --min --max --check -"

Transcription

1 GLPK by GLPK mmg.at.infoseek.co.jp/mmg/glpk/ : update 1 GLPK GNU Linear Programming Kit GNU LP/MIP ILOG AMPL(A Mathematical Programming Language) (optimization problem) X S X f : X R f ( x S f(x) (1) x S (2) f (objective function) S (feasible region) (2) (constraint condition) x S f(x ) 1

2 f(x) x S (optimal solution) f(x ) (optimal value) f(x) (1) 3 GLPK glpsol -m -d -m glpsol -h -m -d -o -y --simplex ( ) --interior --min --max --check --nomip MIP LP --wmps MPS ( ) --wlpt CPLEX ( ) --wtxt ( ) glpsol -m model1.mod -d data1.dat -o result1.sol --wlpt cplexform.txt --min result1.sol CPLEX cplexform.txt 4 GLPK.mod 2

3 .dat 5 (set) GLPK set 5.1 set {, }; ) Node set Node; 5.2 := )Node 1,2,3,4 set Node := ; 6 (parameter) 0 GLPK param 6.1 param {, }; 3

4 ) Cost i i Node param Cost{Node}; ) 1) param Cost := ; 2) param Cost[1] := 5; param Cost[2] := 3; param Cost[3] := 6; param Cost[4] := 9; ) ( ) 4

5 1 p 10 1 q 20 2 p 15 2 q 23 3 p 12 3 q (tr) tr (transpose matrix) 1) 2) tr 1) param Val: p q := ) param Val(tr): 1 2 3:= p q ) ( )

6 1) param ArcResourceFC := ; 2) param ArcResourceFC[1,2,1] := 10; param ArcResourceFC[1,2,2] := 15; param ArcResourceFC[1,3,1] := 13; param ArcResourceFC[1,3,2] := 17; ) param : ) param: LT CT:=

7 ; 7 (variable) 0 GLPK var var {, } )2 Flow i,j i Node, j Node GLPK var Flow{Node, Node}; ) x Z + integer binary 0-1 / set x integer, >=0; 8 (constraint condition) GLPK s.t. subject to s.t. {, } ) r Res x ir M i Node 7

8 s.t. COND1{i in Node}: sum{r in Res}x[i,r] <= M; in sum (objective function) (maximize) (minimize) GLPK maximize minimize minimize : ) : min. Cost i x i i Node minimize OBJ: sum{i in Node} Cost[i] * x[i]; 10 GLPK GNU * / less A > B A-B, A < B 0 div A/B mod A/B ** ˆ A B 8

9 10.2 / A < B A < B A <= B A B A > B A > B A >= B A B A <> B A! = B A B A in B A B A not in B A! in B A / B A within B A B if( ) then else ) t 1 X t 1 t = 1 0 if(t!=1) X[t-1] else : )i > j (i,j) Arc w ij (i > j) sum{(i,j) in Arc : i > j} w[i,j] within within ) 9

10 set A; set K within A; K A set A := ; set K := 5; 10.3 A union B A B A diff B A/B A simdiff B A B A inter B A B A cross B A B a.. b [a,b] setof setof{(, ) in } (, ) ) ARP( (i,j), (r), (p) 3 ) (i,j) (p) 2 AP set AP := setof{(i,j,r,p) in ARP}(i,j,p); 10.4 ) param p default 9999; p

11 10.5 display display ; display 11

12 11 AMPL AMPL GLPK AMPL AMPL GLPK AMPL ampl ampl: AMPL model data solve option solver expand show display reset quit exit let commands AMPL AMPL m1.mod model m1.mod; AMPL commands option solver cplex; model m1.mod; data d1.dat; solve; com1.cms commands com1.cms; expand 12

13 reset; quit; MINOS( ) MIP MIP option solver cplex; CPLEX( ) AMPL 13

14 unbounded (or badly scaled) problem ( or ) must have * subscripts rather than # *,# * # 1 1 ) set Node; set Arc{Node, Node}; var X{Arc}; X Node2 14

15 12.3 ( or )[ ] out of domain ( ) 1 {1..N} 2 GLPK param T; # set Period := 1..T; # param T:=10; # 15

16 param T; # set Period; # param T:=10; # set Period := 1..T; # 12.4 syntax error in set statementset = := = := VB param 12.5 operand preceding = has invalid type if 16

17 x > 0 y = 1 if if 17

( ) ? () 1.1 ( 3 ) j x j 10 j 1 10 j = 1,..., 10 x 1 + x x 10 =

( ) ? () 1.1 ( 3 ) j x j 10 j 1 10 j = 1,..., 10 x 1 + x x 10 = 5 1! (Linear Programming, LP) LP OR LP 1.1 1.1.1 1. 2. 3. 4. 5. ( ) ( ) 1.1 6 1 1.1 ( ) 1 110 2 98 3 85 4 90 5 73 6 62 7 92 8 88 9 79 10 75 1.1.2 4? 900 40 80 120 () 1.1 ( 3 ) j x j 10 j 1 10 j = 1,...,

More information

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2

106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2 105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30

More information

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1

2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x /4 RDA 1 6 x /6 1 x 1 3 x 2 15 x (1.2) (1.3) (1.4) 1 2 (1.5) x 1 1 1 [1] 1.1 1.1. TS 9 1/3 RDA 1/4 RDA 1 1/2 1/4 50 65 3 2 1/15 RDA 2/15 RDA 1/6 RDA 1 1/6 1 1960 2 1/2 1/4 x 1 x 2 x 1, x 2 9 3x 1 + 2x 2 9 (1.1) 1/3 RDA 1 15 x 1 + 2 1/4 RDA 1 6 x 1 1 4 1 1/6 1 x 1 3

More information

(B2) 序章 FICO Xpressの基礎

(B2) 序章 FICO Xpressの基礎 Xpress の 基 礎 Xpress-Mosel Mosel Mosel Xpress-IVE Mosel http://www.msi-jp.com/xpress/learning/square/ Mosel 1. 2 3 2 4 40 160 1kg 3kg 200kg 20 5 chess.mos Mosel mos model Chess uses "mmxprs"! We shall use

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

Solution Report

Solution Report CGE 3 GAMS * Date: 2018/07/24, Version 1.1 1 2 2 GAMSIDE 3 2.1 GAMS................................. 3 2.2 GAMSIDE................................ 3 2.3 GAMSIDE............................. 7 3 GAMS 11

More information

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len( AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) 29 4 29 A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(b)-1] == c[0]: print( YES ) else: print( NO ) 1 B:

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

9 ZIMPL 言語と SCIP による数理最適化 Mathematical Optimization with ZIMPL and SCIP ネットワーク情報学部 School of Network and Information 高野祐一 Yuichi TAKANO Keywords : Mat

9 ZIMPL 言語と SCIP による数理最適化 Mathematical Optimization with ZIMPL and SCIP ネットワーク情報学部 School of Network and Information 高野祐一 Yuichi TAKANO Keywords : Mat 9 ZIMPL 言語と SCIP による数理最適化 Mathematical Optimization with ZIMPL and SCIP ネットワーク情報学部 School of Network and Information 高野祐一 Yuichi TAKANO Keywords : Mathematical optimization, Software, Modeling language,

More information

1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf ("%s", str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i

1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf (%s, str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i ABC066 / ARC077 writer: nuip 2017 7 1 For International Readers: English editorial starts from page 8. A : ringring a + b b + c a + c a, b, c a + b + c 1 # include < stdio.h> 2 3 int main (){ 4 int a,

More information

…p…^†[…fiflF”¯ Pattern Recognition

…p…^†[…fiflF”¯   Pattern Recognition Pattern Recognition Shin ichi Satoh National Institute of Informatics June 11, 2019 (Support Vector Machines) (Support Vector Machines: SVM) SVM Vladimir N. Vapnik and Alexey Ya. Chervonenkis 1963 SVM

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu

# let rec sigma (f, n) = # if n = 0 then 0 else f n + sigma (f, n-1);; val sigma : (int -> int) * int -> int = <fun> sigma f n ( : * -> * ) sqsum cbsu II 4 : 2001 11 7 keywords: 1 OCaml OCaml (first-class value) (higher-order function) 1.1 1 2 + 2 2 + + n 2 sqsum 1 3 + 2 3 + + n 3 cbsum # let rec sqsum n = # if n = 0 then 0 else n * n + sqsum (n - 1)

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

2005 D Pascal CASL ( ) Pascal C 3. A A Pascal TA TA TA

2005 D Pascal CASL ( ) Pascal C 3. A A Pascal TA TA TA 2005 D 1 1.1 1.2 Pascal CASL ( ) Pascal 1. 2005 10 13 2006 1 19 12 2. C 3. A A 2 1 2 Pascal 1.3 1. 2. TA TA TA [email protected] [email protected] [email protected] [email protected]

More information

パズルをSugar制約ソルバーで解く

パズルをSugar制約ソルバーで解く Sugar 1 2 3 1 CSPSAT 2008 8 21 Sugar 1 2 3 Sugar Sugar (CSP) (SAT ) (encode) SAT SAT order encoding direct encoding support encoding http://bachistckobe-uacjp/sugar/ Web Sugar 1 2 3 Sugar SAT (COP) MAX-CSP

More information

OR#5.key

OR#5.key オペレーションズ リサーチ1 Operations Research 前学期 月曜 3限(3:00-4:30) 8 整数計画モデル Integer Programming 経営A棟106教室 山本芳嗣 筑波大学 大学院 システム情報工学研究科 整数計画問題 2 凸包 最小の凸集合 線形計画問題 変数の整数条件 ctx Ax b x 0 xj は整数 IP LP 3 4 Bx d!!!!!? P NP

More information

VDM-SL VDM VDM-SL Toolbox VDM++ Toolbox 1 VDM-SL VDM++ Web bool

VDM-SL VDM VDM-SL Toolbox VDM++ Toolbox 1 VDM-SL VDM++ Web bool VDM-SL VDM++ 23 6 28 VDM-SL Toolbox VDM++ Toolbox 1 VDM-SL VDM++ Web 2 1 3 1.1............................................... 3 1.1.1 bool......................................... 3 1.1.2 real rat int

More information

Parametric Polymorphism

Parametric Polymorphism ML 2 2011/04/19 Parametric Polymorphism Type Polymorphism ? : val hd_int : int list - > int val hd_bool : bool list - > bool val hd_i_x_b : (int * bool) list - > int * bool etc. let hd_int = function (x

More information

5V 2.4 DSOF 4 1 1-1 1-2 5V 1-3 SET RESET 5V 5V 1-4 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5 2 2-1 SET RESET 5V 5V 2-2 1 2 3 5V 5V 1 2 3 4 2-3 2-4

More information

SET 5V RESET 1 1-1 SET SET SET SET SET SET 1-2 SET 1-3 SET SET 5V RESE SET AP MODE RT 5V 1-4 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

コンピュータ概論

コンピュータ概論 5.1 VBA VBA Check Point 1. 2. 5.1.1 ( bug : ) (debug) On Error On Error On Error GoTo line < line > 5.1.1 < line > Cells(i, j) i, j 5.1.1 MsgBox Err.Description Err1: GoTo 0 74 Visual Basic VBA VBA Project

More information

CM-3G 周辺モジュール拡張技術文書 INA226センサ(電流、電圧、電力)

CM-3G 周辺モジュール拡張技術文書 INA226センサ(電流、電圧、電力) CM-3G 周辺モジュール拡張技術文書 INA226 センサ ( 電流 電圧 電力 ) ( 第 1 版 ) Copyright (C)2015 株式会社コンピューテックス 目次 1. はじめに... 1 2. INA226 について... 1 3. 接続図... 1 4. buildroot へのパッチと make 方法... 2 5. シェル スクリプト... 3 6. シェル スクリプトの実行...

More information

2009 D Pascal CASL II ( ) Pascal C 3. A A Pascal TA TA

2009 D Pascal CASL II ( ) Pascal C 3. A A Pascal TA TA 2009 D 1 1.1 1.2 Pascal CASL II ( ) Pascal 1. 2009 10 15 2010 1 29 16 2. C 3. A A 2 1 2 Pascal 1.3 1. 2. TA [email protected] TA [email protected] [email protected]

More information

untitled

untitled II 4 Yacc Lex 2005 : 0 1 Yacc 20 Lex 1 20 traverse 1 %% 2 [0-9]+ { yylval.val = atoi((char*)yytext); return NUM; 3 "+" { return + ; 4 "*" { return * ; 5 "-" { return - ; 6 "/" { return / ; 7 [ \t] { /*

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

2011 D Pascal CASL II ( ) Pascal C 3. A A Pascal TA TA enshu-

2011 D Pascal CASL II ( ) Pascal C 3. A A Pascal TA TA enshu- 2011 D 1 1.1 1.2 Pascal CASL II ( ) Pascal 1. 2011 10 6 2011 2 9 15 2. C 3. A A 2 1 2 Pascal 1.3 1. 2. TA [email protected] TA [email protected] [email protected]

More information

Exam : A JPN Title : SAS Base Programming for SAS 9 Vendor : SASInstitute Version : DEMO Get Latest & Valid A JPN Exam's Question and Answ

Exam : A JPN Title : SAS Base Programming for SAS 9 Vendor : SASInstitute Version : DEMO Get Latest & Valid A JPN Exam's Question and Answ Actual4Test http://www.actual4test.com Actual4test - actual test exam dumps-pass for IT exams Exam : A00-211-JPN Title : SAS Base Programming for SAS 9 Vendor : SASInstitute Version : DEMO Get Latest &

More information

94 expression True False expression FalseMSDN IsNumber WorksheetFunctionIsNumberexpression expression True Office support.office.com/ja-jp/ S

94 expression True False expression FalseMSDN IsNumber WorksheetFunctionIsNumberexpression expression True Office   support.office.com/ja-jp/ S Excel VBA a Excel VBA VBA IsNumeric IsNumber SpecialCells SpecialCells MSDNMicrosoft Developer NetworkIsNumeric IsNumber SpecialCells IsNumeric VBA IsNumericexpression SpecialCells 94 expression True False

More information

Numerical Analysis II, Exam End Term Spring 2017

Numerical Analysis II, Exam End Term Spring 2017 H. Ammari W. Wu S. Yu Spring Term 2017 Numerical Analysis II ETH Zürich D-MATH End Term Spring 2017 Problem 1 Consider dx = f(t, x), t [0, T ] dt x(0) = x 0 R [28 Marks] with f C subject to the Lipschitz

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

? FPGA FPGA FPGA : : : ? ( ) (FFT) ( ) (Localization) ? : 0. 1 2 3 0. 4 5 6 7 3 8 6 1 5 4 9 2 0. 0 5 6 0 8 8 ( ) ? : LU Ax = b LU : Ax = 211 410 221 x 1 x 2 x 3 = 1 0 0 21 1 2 1 0 0 1 2 x = LUx = b 1 31

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

橡点検記録(集約).PDF

橡点検記録(集約).PDF 942.8.8.8.7 671 86 11 1 9 9 9 1 1,792 7,23 2,483 1,324 2,198 7,23 82 7,23 6,327 9,22 9,713 8,525 8,554 9,22. 8,554. 1,79 9,713 95 947 8,525.. 944 671 81 7 17 1,29 1,225 1,241 1,25 1,375 9.3 23,264 25,

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

橡ボーダーライン.PDF

橡ボーダーライン.PDF 1 ( ) ( ) 2 3 4 ( ) 5 6 7 8 9 10 11 12 13 14 ( ) 15 16 17 18 19 20 ( ) 21 22 23 24 ( ) 25 26 27 28 29 30 ( ) 31 To be or not to be 32 33 34 35 36 37 38 ( ) 39 40 41 42 43 44 45 46 47 48 ( ) 49 50 51 52

More information

3 SIMPLE ver 3.2: SIMPLE (SIxteen-bit MicroProcessor for Laboratory Experiment) 1 16 SIMPLE SIMPLE 2 SIMPLE 2.1 SIMPLE (main memo

3 SIMPLE ver 3.2: SIMPLE (SIxteen-bit MicroProcessor for Laboratory Experiment) 1 16 SIMPLE SIMPLE 2 SIMPLE 2.1 SIMPLE (main memo 3 SIMPLE ver 3.2: 20190404 1 3 SIMPLE (SIxteen-bit MicroProcessor for Laboratory Experiment) 1 16 SIMPLE SIMPLE 2 SIMPLE 2.1 SIMPLE 1 16 16 (main memory) 16 64KW a (C )*(a) (register) 8 r[0], r[1],...,

More information

Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 III 7 (2014 11 18 ) 1

Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 III 7 (2014 11 18 ) 1 III 7 VBA / III 7 (2014 11 18 ) Excel Excel Excel 20132 20 = 1048576 Excel 201316 100 III 7 (2014 11 18 ) 1 Excel VBA Excel Excel 2 20 Excel QR Excel R QR QR BLASLAPACK III 7 (2014 11 18 ) 2 VBA VBA (Visual

More information

# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n

# let st1 = {name = Taro Yamada; id = };; val st1 : student = {name=taro Yamada; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n

More information

橡Taro9-生徒の活動.PDF

橡Taro9-生徒の活動.PDF 3 1 4 1 20 30 2 2 3-1- 1 2-2- -3- 18 1200 1 4-4- -5- 15 5 25 5-6- 1 4 2 1 10 20 2 3-7- 1 2 3 150 431 338-8- 2 3 100 4 5 6 7 1-9- 1291-10 - -11 - 10 1 35 2 3 1866 68 4 1871 1873 5 6-12 - 1 2 3 4 1 4-13

More information

I 11

I 11 I 11 2 h 345 645 3 var strs = ["meijo", "university", "abc", "shiogama","yagoto", "ueda", "hara", "irinaka", "yagoto-nisseki", "kanayama"] function make_table(){ var a = [] for (var i = 0; i < strs.length;

More information

13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software Nspire Nspire Nspir

13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software Nspire Nspire Nspir 13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software 37.1 37.1 Nspire Nspire Nspire 37.1: Student Software 13 2 13 Student Software esc

More information

1

1 PalmGauss SC PGSC-5G Instruction Manual PalmGauss SC PGSC-5G Version 1.01 PalmGauss SC PGSC5G 1.... 3 2.... 3 3.... 3 3.1... 3 3.2... 3 3.3 PalmGauss... 4 3.4... 4 3.4.1 (Fig. 4)... 4 3.4.2 (Fig. 5)...

More information