一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM
|
|
|
- たみえ こしの
- 7 years ago
- Views:
Transcription
1 .. ( ) (2) GLMM [email protected] I : :29 kubostat2013ou2 ( ( ) (2) / 74
2 I.1 N k.2 binomial distribution logit link function.3.4! offset.5 GLM!.6.7 kubostat2013ou2 ( ( ) (2) / 74
3 II.8 r i.9 GLMM (A) f i =C (B) f i =T yi x i x i kubostat2013ou2 ( ( ) (2) / 74
4 6 7 : : kubostat2013ou2 ( ( ) (2) / 74
5 kubostat2013ou2 ( ( ) (2) / 74
6 ? (GLM) (Poisson regression) (logistic regression) (linear regression) kubostat2013ou2 ( ( ) (2) / 74
7 (GLM)??? kubostat2013ou2 ( ( ) (2) / 74
8 GLM : : e.g., β 1 + β 2 x i : kubostat2013ou2 ( ( ) (2) / 74
9 GLM logistic : : e.g., β 1 + β 2 x i : logit yi x i kubostat2013ou2 ( ( ) (2) / 74
10 N k 1. N k y i {0, 1, 2,, 8} kubostat2013ou2 ( ( ) (2) / 74
11 N k? 8 y! f i C: T: i N i = 8 y i = 3 (alive) (dead) x i kubostat2013ou2 ( ( ) (2) / 74
12 N k data4a.csv CSV (comma separated value) format file R : > d <- read.csv("data4a.csv") or > d <- read.csv( + " d data frame ( ) kubostat2013ou2 ( ( ) (2) / 74
13 N k data frame d > summary(d) N y x f Min. :8 Min. :0.00 Min. : C:50 1st Qu.:8 1st Qu.:3.00 1st Qu.: T:50 Median :8 Median :6.00 Median : Mean :8 Mean :5.08 Mean : rd Qu.:8 3rd Qu.:8.00 3rd Qu.: Max. :8 Max. :8.00 Max. : kubostat2013ou2 ( ( ) (2) / 74
14 N k > plot(d$x, d$y, pch = c(21, 19)[d$f]) > legend("topleft", legend = c("c", "T"), pch = c(21, 19)) yi C T x i? kubostat2013ou2 ( ( ) (2) / 74
15 binomial distribution logit link function 2. binomial distribution logit link function kubostat2013ou2 ( ( ) (2) / 74
16 binomial distribution logit link function : N y ( N y p(y N, q) = ( ) N q y (1 q) N y y ) N y p(y i 8, q) q = 0.1 q = 0.8 q = y i kubostat2013ou2 ( ( ) (2) / 74
17 binomial distribution logit link function (z i : e.g. z i = β 1 + β 2 x i ) 1 q i = logistic(z i ) = 1 + exp( z i ) > logistic <- function(z) 1 / (1 + exp(-z)) # > z <- seq(-6, 6, 0.1) > plot(z, logistic(z), type = "l") q q = z 1 1+exp( z) kubostat2013ou2 ( ( ) (2) / 74
18 binomial distribution logit link function {β 1, β 2 } = {0, 2} (A) β 2 = 2 β 1 (B) β 1 = 0 β 2 q (A) β 2 = 2 β 1 = 2 β 1 = x β 1 = (B) β 1 = 0 β 2 = 4 β 2 = x β 2 = 1 {β 1, β 2 } x q 0 q 1 kubostat2013ou2 ( ( ) (2) / 74
19 binomial distribution logit link function logit link function logistic 1 q = 1 + exp( (β 1 + β 2 x)) = logistic(β 1 + β 2 x) logit logit(q) = log q 1 q = β 1 + β 2 x logit logistic logistic logit logit is the inverse function of logistic function, vice versa kubostat2013ou2 ( ( ) (2) / 74
20 binomial distribution logit link function R β 1 β 2 (A) f i =C (B) y x x > glm(cbind(y, N - y) ~ x + f, data = d, family = binomial)... Coefficients: (Intercept) x ft kubostat2013ou2 ( ( ) (2) / 74
21 binomial distribution logit link function : (A) f i =C (B) f i =T yi x i x i kubostat2013ou2 ( ( ) (2) / 74
22 3. kubostat2013ou2 ( ( ) (2) / 74
23 ? logit(q) = log q 1 q = β 1 + β 2 x + β 3 f + β 4 xf... in case that β 4 < 0, sometimes it predicts... y T C x kubostat2013ou2 ( ( ) (2) / 74
24 glm(y ~ x + f,...) glm(y ~ x + f + x:f,...) (A) (B) y T C T C x x kubostat2013ou2 ( ( ) (2) / 74
25 ! offset 4.! offset kubostat2013ou2 ( ( ) (2) / 74
26 ! offset? / : ? ( ) kubostat2013ou2 ( ( ) (2) / 74
27 ! offset : N k : : specific leaf area (SLA) : offset! kubostat2013ou2 ( ( ) (2) / 74
28 ! offset kubostat2013ou2 ( ( ) (2) / 74
29 ! offset offset : x {0.1, 0.2,, 1.0} 10 glm(..., family = poisson) kubostat2013ou2 ( ( ) (2) / 74
30 ! offset?! x A = /! glm() offset kubostat2013ou2 ( ( ) (2) / 74
31 ! offset R data.frame: Area, x, y > load("d2.rdata") > head(d, 8) # 8 Area x y kubostat2013ou2 ( ( ) (2) / 74
32 ! offset vs > plot(d$x, d$y / d$area) d$y/d$area d$x kubostat2013ou2 ( ( ) (2) / 74
33 ! offset A vs y > plot(d$area, d$y) d$y d$area A y kubostat2013ou2 ( ( ) (2) / 74
34 ! offset x ( ) > plot(d$area, d$y, cex = d$x * 2) d$y d$area? kubostat2013ou2 ( ( ) (2) / 74
35 ! offset x y x kubostat2013ou2 ( ( ) (2) / 74
36 ! offset = 1. i y i λ i : y i Pois(λ i ) 2. λ i A i x i λ i = A i exp(β 1 + β 2 x i ) λ i = exp(β 1 + β 2 x i + log(a i )) log(λ i ) = β 1 + β 2 x i + log(a i ) log(a i ) offset ( β ) kubostat2013ou2 ( ( ) (2) / 74
37 ! offset GLM! family: poisson, link : "log" : y ~ x offset : log(area) z = β 1 + β 2 x + log(area) a, b λ log(λ) = z λ = exp(z) = exp(β 1 + β 2 x + log(area)) λ : kubostat2013ou2 ( ( ) (2) / 74
38 ! offset glm() kubostat2013ou2 ( ( ) (2) / 74
39 ! offset R glm() > fit <- glm(y ~ x, family = poisson(link = "log"), data = d, offset = log(area)) > print(summary(fit)) Call: glm(formula = y ~ x, family = poisson(link = "log"), data = d, offset = log(area)) (......) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) x e-06 kubostat2013ou2 ( ( ) (2) / 74
40 ! offset d$y x = 0.9 light environment x = 0.1 dark environment d$area glm() kubostat2013ou2 ( ( ) (2) / 74
41 ! offset : glm() offset offset = exp( ) d$y d$area kubostat2013ou2 ( ( ) (2) / 74
42 ! offset : N k : : specific leaf area (SLA) : offset! kubostat2013ou2 ( ( ) (2) / 74
43 GLM! 5. GLM! (overdispersion)? kubostat2013ou2 ( ( ) (2) / 74
44 GLM! :?! (A) i N i = 8 (B) 100 x i y i y i = 3 x i {2, 3, 4, 5, 6} yi x i kubostat2013ou2 ( ( ) (2) / 74
45 GLM! N y? number of alive seeds y i : : β 1 + β 2 x i : logit number of leaves x i kubostat2013ou2 ( ( ) (2) / 74
46 GLM! GLM! yi (A) β 2 (B)! x i = 4 y i x i y i kubostat2013ou2 ( ( ) (2) / 74
47 6.? kubostat2013ou2 ( ( ) (2) / 74
48 (overdispersion)? (A) Not or less overdispersed (B) Overdispersed!! y i y i kubostat2013ou2 ( ( ) (2) /
49 GLM GLM does not take into account individual differences kubostat2013ou2 ( ( ) (2) / 74
50 Almost all real data are overdispersed! kubostat2013ou2 ( ( ) (2) / 74
51 7. kubostat2013ou2 ( ( ) (2) / 74
52 number of alive seeds y i : : β 1 + β 2 x i + r i : logit number of leaves x i kubostat2013ou2 ( ( ) (2) / 74
53 i r i qi r i > 0 r i = 0 r i < x i kubostat2013ou2 ( ( ) (2) / 74
54 {r i } s = 1.0 s = r i s = 3.0 p(r i s) = 1 2πs 2 exp ( r2 i 2s 2 p(r i s) r i r i r i kubostat2013ou2 ( ( ) (2) / 74 )
55 r i (A) (B) p(r i s) s = {r i } s = 3.0 I III I II I I r i II I II I II I I I III I II I I I I I r i 1 q i = 1+exp( r i ) y i p(y i q i ) y i kubostat2013ou2 ( ( ) (2) / 74
56 > # defining logistic function > logistic <- function(z) { 1 / (1 + exp(-z)) } > # random numbers following binomial distribution > rbinom(100, 8, prob = logistic(0)) > # random numbers following Gausssian distribution > rnorm(100, mu = 0, sd = 0.5) > r <- rnorm(100, mu = 0, sd = 0.5) > # random numbers following...? > rbinom(100, 8, prob = logistic(0 + r)) kubostat2013ou2 ( ( ) (2) / 74
57 Generalized Linear Mixed Model (GLMM) Mixed : β 1 + β 2 x i + r i fixed effects: β 1 + β 2 x i random effects: +r i fixed? random?? kubostat2013ou2 ( ( ) (2) / 74
58 : fixed effects random effects kubostat2013ou2 ( ( ) (2) / 74
59 : (linear mixed model, LMM) random effects : : kubostat2013ou2 ( ( ) (2) / 74
60 global parameter, local parameter? Generalized Linear Mixed Model (GLMM) : β 1 + β 2 x i + r i fixed effects: β 1 + β 2 x i global parameter s global parameter random effects: +r i local parameter i ( ) global/local parameter kubostat2013ou2 ( ( ) (2) / 74
61 全データ 個体個体 3 3 のデータのデータ個体 1 のデータ個体個体 3 3 のデータのデータ個体 2 のデータ {r 1, r 2, r 3,..., r 100 } β 1 β 2 local parameter global parameter? kubostat2013ou2 ( ( ) (2) / 74 s
62 r i 8. r i kubostat2013ou2 ( ( ) (2) / 74
63 r i r i local parameters: {r 1, r 2,, r 100 } 100 r i > d <- read.csv("data.csv") > head(d) N y x id kubostat2013ou2 ( ( ) (2) / 74
64 r i r i y i ( ) 8 p(y i β 1, β 2 ) = q yi i (1 q i) 8 y i r i i r i L i = p(r i s) = β 1, β 2, s y i ) 1 ( exp r2 i 2πs 2 2s 2 p(y i β 1, β 2, r i ) p(r i s)dr i L(β 1, β 2, s) = i L i kubostat2013ou2 ( ( ) (2) / 74
65 r i global parameter local parameter Generalized Linear Mixed Model (GLMM) Mixed : β 1 + β 2 x i + r i global parameter fixed effects: β 1, β 2 : s local parameter random effects: {r 1, r 2,, r 100 } kubostat2013ou2 ( ( ) (2) / 74
66 r i r i kubostat2013ou2 ( ( ) (2) / 74
67 r i r r = 2.20 q = 0.10 y r = 0.60 q = 0.35 y r = 1.00 q = 0.73 y r = 2.60 q = 0.93 y r p(r s) p(r) = 0.10 r p(r) = 0.13 r p(r) = 0.13 r p(r) = 0.09 r y kubostat2013ou2 ( ( ) (2) / 74
68 r i r r = 1.10 λ = 0.55 y r = 0.30 λ = 1.22 y r = 0.50 λ = 2.72 y r = 1.30 λ = 6.05 y r p(r s) p(r) = 0.22 r p(r) = 0.38 r p(r) = 0.35 r p(r) = 0.17 r y kubostat2013ou2 ( ( ) (2) / 74
69 r i glmmml package GLMM > install.packages("glmmml") # if you don t have glmmml > library(glmmml) > glmmml(cbind(y, N - y) ~ x, data = d, family = binomial, + cluster = id) > d <- read.csv("data.csv") > head(d) N y x id kubostat2013ou2 ( ( ) (2) / 74
70 r i GLMM : ˆβ1, ˆβ 2, ŝ > glmmml(cbind(y, N - y) ~ x, data = d, family = binomial, + cluster = id)...(snip)... coef se(coef) z Pr(> z ) (Intercept) e-06 x e-06 Scale parameter in mixing distribution: 2.49 gaussian Std. Error: Residual deviance: 264 on 97 degrees of freedom AIC: 270 ˆβ 1 = 4.13, ˆβ 2 = 0.99, ŝ = 2.49 kubostat2013ou2 ( ( ) (2) / 74
71 r i GLMM (A) (B) x = 4 yi x i y kubostat2013ou2 ( ( ) (2) / 74
72 GLMM 9. GLMM kubostat2013ou2 ( ( ) (2) / 74
73 GLMM + GLMM I (A) pot A pot A pot B pot B (B) logitq i = β 1 + β 2 x i (GLM) q i : logitq i = β 1 + β 2 x i + r i (A) (B) kubostat2013ou2 ( ( ) (2) / 74
74 GLMM + GLMM II (C) pot A pot B logitq i = β 1 + β 2 x i + r j (D) pot A pot B logitq i = β 1 + β 2 x i + r i + r j kubostat2013ou2 ( ( ) (2) / 74
75 GLMM GLMM random effects global parameter local parameter GLMM global parameter local parameter local parameter (e.g. + ) kubostat2013ou2 ( ( ) (2) / 74
kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or
kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4
講義のーと : データ解析のための統計モデリング. 第3回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10
kubo2017sep16a p.1 ( 1 ) [email protected] 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106
kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i
kubostat2017j p.1 2017 (j) Categorical Data Analsis [email protected] http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G
/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )
2012 01 25 1/ 55 ( II) : (2012 1 ) 2 2 (GLM) 2012 01 25! [email protected] http://g.gl/76c4i 2012 01 25 2/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 3/ 55 1. : 2.
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
講義のーと : データ解析のための統計モデリング. 第2回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
(2/24) : 1. R R R
R? http://hosho.ees.hokudai.ac.jp/ kubo/ce/2004/ : [email protected] (2/24) : 1. R 2. 3. R R (3/24)? 1. ( ) 2. ( I ) : (p ) : cf. (power) p? (4/24) p ( ) I p ( ) I? ( ) (5/24)? 0 2 4 6 8 A B A B (control)
12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71
2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i
Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,
kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :
kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)
DAA09
> summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/
2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )
1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21
1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 [email protected] 2013/11/21 2 予定 第 1 回 : Rの基礎と仮説検定 第 2 回 : 分散分析と回帰 第 3 回 : 一般線形モデル 交互作用 第 4.1 回 : 一般化線形モデル 第 4.2 回 : モデル選択 (11/29?) 第 5 回 : 一般化線形混合モデル
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht
kubo2015ngt6 p.1 2015 (6 MCMC [email protected], @KuboBook http://goo.gl/m8hsbm 1 ( 2 3 4 5 JAGS : 2015 05 18 16:48 kubo (http://goo.gl/m8hsbm 2015 (6 1 / 70 kubo (http://goo.gl/m8hsbm 2015 (6 2 /
第13回:交差項を含む回帰・弾力性の推定
13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β
: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30
PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
201711grade2.pdf
2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35
2 / 39
W707 [email protected] 1 / 39 2 / 39 1 2 3 3 / 39 q f (x; α) = α j B j (x). j=1 min α R n+2 n ( d (Y i f (X i ; α)) 2 2 ) 2 f (x; α) + λ dx 2 dx. i=1 f B j 4 / 39 : q f (x) = α j B j (x). j=1 : x
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1
kubostat1g p.1 1 (g Hierarchical Bayesian Model [email protected] http://goo.gl/7ci The development of linear models Hierarchical Bayesian Model Be more flexible Generalized Linear Mixed Model (GLMM
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
PackageSoft/R-033U.tex (2018/March) R:
................................................................................ R: 2018 3 29................................................................................ R AI R https://cran.r-project.org/doc/contrib/manuals-jp/r-intro-170.jp.pdf
今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)
生態学の時系列データ解析でよく見る あぶない モデリング 久保拓弥 mailto:[email protected] statistical model for time-series data 2017-07-03 kubostat2017 (h) 1/59 今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの
2 と入力すると以下のようになる > x1<-c(1.52,2,3.01,9,2,6.3,5,11.2) > y1<-c(4,0.21,-1.5,8,2,6,9.915,5.2) > cor(x1,y1) [1] > cor.test(x1,y1) Pearson's produ
1 統計 データ解析セミナーの予習 2010.11.24 粕谷英一 ( 理 生物 生態 ) GCOE アジア保全生態学 本日のメニュー R 一般化線形モデル (Generalized Linear Models 略して GLM) R で GLM を使う R でグラフを描く 説明しないこと :R でできること全般 たくさんあるので時間的に無理 R でするプログラミング-データ解析なら使いやすい R 起動と終了
kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル
p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) Why in Japanese? because even in Japanese, statistics
統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1
統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) [email protected] 1/56 The main language of this class is Japanese Sorry Why in Japanese? because
Microsoft PowerPoint - GLMMexample_ver pptx
Linear Mixed Model ( 以下 混合モデル ) の短い解説 この解説のPDFは http://www.lowtem.hokudai.ac.jp/plantecol/akihiro/sumida-index.html の お勉強 のページにあります. ver 20121121 と との間に次のような関係が見つかったとしよう 全体的な傾向に対する回帰直線を点線で示した ところが これらのデータは実は異なる
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
インターネットを活用した経済分析 - フリーソフト Rを使おう
R 1 1 1 2017 2 15 2017 2 15 1/64 2 R 3 R R RESAS 2017 2 15 2/64 2 R 3 R R RESAS 2017 2 15 3/64 2-4 ( ) ( (80%) (20%) 2017 2 15 4/64 PC LAN R 2017 2 15 5/64 R R 2017 2 15 6/64 3-4 R 15 + 2017 2 15 7/64
: Bradley-Terry Burczyk
58 (W15) 2011 03 09 [email protected] http://goo.gl/edzle 2011 03 09 (2011 03 09 19 :32 ) : Bradley-Terry Burczyk ? ( ) 1999 2010 9 R : 7 (1) 8 7??! 15 http://www.atmarkit.co.jp/fcoding/articles/stat/07/stat07a.html
R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R
R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]
/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.
2010 05 22 1/ 35 2010 2010 05 22 *1 [email protected] *1 c Mike Gonzalez, October 14, 2007. Wikimedia Commons. 2010 05 22 2/ 35 1. 2. 3. 2010 05 22 3/ 35 : 1.? 2. 2010 05 22 4/ 35 1. 2010 05 22 5/
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28
tokei01.dvi
2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN
dvi
2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理
R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)
2.1 R, ( ), Download R for Windows base. R ( ) R win.exe, 2.,.,.,. R > 3*5 # [1] 15 > c(19,76)+c(11,13)
3 ( ) R 3 1 61, 2016/4/7( ), 4/14( ), 4/21( ) 1 1 2 1 2.1 R, ( )................ 2 2.2 ggm............................ 3 2.3,................ 4 2.4...................................... 6 2.5 1 ( )....................
10:30 12:00 P.G. vs vs vs 2
1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B
N Express5800/R320a-E4 N Express5800/R320a-M4 ユーザーズガイド
7 7 Phoenix BIOS 4.0 Release 6.0.XXXX : CPU=Pentium III Processor XXX MHz 0640K System RAM Passed 0127M Extended RAM Passed WARNING 0212: Keybord Controller Failed. : Press to resume, to setup
Express5800/R320a-E4, Express5800/R320b-M4ユーザーズガイド
7 7 Phoenix BIOS 4.0 Release 6.0.XXXX : CPU=Pentium III Processor XXX MHz 0640K System RAM Passed 0127M Extended RAM Passed WARNING 0212: Keybord Controller Failed. : Press to resume, to setup
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関
R によるパネルデータモデルの推定 R を用いて 静学的パネルデータモデルに対して Pooled OLS, LSDV (Least Squares Dummy Variable) 推定 F 検定 ( 個別効果なしの F 検定 ) GLS(Generalized Least Square : 一般化最小二乗 ) 法による推定 およびハウスマン検定を行うやり方を 動学的パネルデータモデルに対して 1 階階差
1 2 3 4 10 5 30 87 50 20 3 7 2 2 6 3 70 7 5 10 20 20 30 14 5 1,000 24 112 2 3 1 8 110 9 JR 10 110 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 25 30 31 32 25 A 33 B C D E F G PR PR or 34 35
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
JMP V4 による生存時間分析
V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor
Presentation Title Goes Here
SAS 9: (reprise) SAS Institute Japan Copyright 2004, SAS Institute Inc. All rights reserved. Greetings, SAS 9 SAS 9.1.3 Copyright 2004, SAS Institute Inc. All rights reserved. 2 Informations of SAS 9 SAS
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
Microsoft Word - D JP.docx
Application Service Gateway Thunder/AX Series vthunder ライセンスキー インストール 手順 1 1.... 3 2. vthunder... 3 3. ACOS... 3 4. ID... 5 5.... 8 6.... 8 61... 8 62 GUI... 10 2 1. 概要 2. vthunder へのアクセス 方法 SSHHTTPSvThunder
s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0
7 DW 7.1 DW u 1, u,, u (DW ) u u 1 = u 1, u,, u + + + - - - - + + - - - + + u 1, u,, u + - + - + - + - + u 1, u,, u u 1, u,, u u +1 = u 1, u,, u Y = α + βx + u, u = ρu 1 + ɛ, H 0 : ρ = 0, H 1 : ρ 0 ɛ 1,
Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21
Stata User Group Meeting in Kyoto / 2017 9 16 ( / ) Stata User Group Meeting in Kyoto 2017 9 16 1 / 21 Rosenbaum and Rubin (1983) logit/probit, ATE = E [Y 1 Y 0 ] ( / ) Stata User Group Meeting in Kyoto
1 (1) (2)
1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)
- 2 -
- 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -
