untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 R 1

2 Excel

3

4 1, 2.6, 2/3, 105.2, , 3, 0, 245 A, B, C... ; , 3/4, 0.99

5 MS Excel»» R Macintosh

6 MS Excel Excel Excel

7 MS Excel MS Access Excel R

8 R R R.Data win Mac ctrl + R Win, command + Mac

9 R > > 1 1 > 2 * 2 > 4 / 2 > 3^2 > sqrt(9) > 9^(1/2) ½

10 R Tips tips/r.html Rjp Wiki

11 > a < 3.14 > b < c( 1, 2, 3, 4, 5, 6) > x < matrix(nrow = 2, ncol = 3) > data < read.csv( HandSize.csv, header = T) b[3] x[2, 3] data$hl

12 CSV CSV *.csv R read.csv(.csv, header = T) R write.csv(.csv

13 [,] > d[d$hl== F,] # d d$hl== F TRUE > d[d$hl== F,]$HL # HL subest() > d.f < subset(d, HL == F ) # d HL== H d.f > d.f$hl

14 plot(), boxplot(), histogram() plot(hl, data = d) HL boxplot(hl, data = d) plot(hl ~ Sex, data = d) HL Sex plot(hl ~ BL, data = d) histogram(d$hl, breaks = ) breaks

15

16 a X 1, X 2,...X n a a X 1 a, X 2 a,...x n a n Σ X i a) # Σ X i a # Σ X i a) 2 # 2

17 a a f(a) a f(a) = (X 1 a) 2 + (X 2 a) (X n a) 2 = X 12 + X X n2 2a(X 1 + X X n ) + na 2 a f(a) a f(a) a f (a) = 0 2(X 1 + X X n ) + 2a = 0 a = (X 1 + X X n ) /n

18 N μ, σ 2 μ σ 2

19 lm( ) lm()

20 m0 null Null model μ μ ( x ) 2

21 m0 P P t = 0 t

22 HL HL t p α α = 0.05 = 1/20 p α HL

23 α p p = /20... Type I

24 m0 P P t = 0 t

25 ( x / > t.cal < (mean(d$hl) 0) / sqrt(var(d$hl)/n) n 1 t n 25

26 m1 ANOVA lm(hl ~ 1, data = d) lm(hl ~ Sex, data = d)

27 m1 ANOVA p p t

28 ... lm(hl ~ Sex, data = d) t > var.test(bl.f, BL.m) > t.test(bl.f, BL.m,,var.equal = TRUE) BL.f BL.m t p lm()

29 ...

30 m2 Y Y p p Y

31 m3 ANCOVA p 0.05

32 m4 ANCOVA

33 HL ~ 1 HL ~ Sex + HL ~ BL + BL HL ~ BL + Sex + BL + ) + BL HL ~ BL + Sex + BL:Sex + BL + ) + BL summary a Intercept b BL a m SexM b m BL:SexM

34 ... p

35

36 Model 0: HL ~ 1 Model 1: HL ~ Sex Model 2: HL ~BL HL male female HL HL BL BL BL Model 3: HL ~ BL + Sex Model 4: HW ~ BL + Sex + BL:Sex HL HL BL BL

37 AIC AIC 2 e.g.

38 AIC AIC Model 3 Model 4

39 AIC. BL*Sex BL +Sex BL Sex 1 AIC BL*Sex e e BL+Sex e e BL N/A 7.017e Sex 4.994e

40 Excel R Excel R Excel

41 R MCMC ( ) Crawley: :R

42 2

43 anova(h0, h1) 2 h 0 h p.value = 1 pchisq(2*(mll.h1$value MLL.h0$value), h1 h0 ) F 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

2

2 2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

!!! 2!

!!! 2! 2016/5/17 (Tue) SPSS ([email protected])! !!! 2! 3! 4! !!! 5! (Population)! (Sample) 6! case, observation, individual! variable!!! 1 1 4 2 5 2 1 5 3 4 3 2 3 3 1 4 2 1 4 8 7! (1) (2) (3) (4) categorical

More information

1...1 1...1 2...1 2.1...1 2.2...5 2.3...6 1...6 2...6 3...7 4...7 5...7 2.4...8 2...9 1...9 2... 10 2.1... 10 1... 10 2... 11 2.2... 12 1 2... 13 3... 18 4... 22 5... 23 6... 24 2.3... 34 1... 34 2...

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

QW-3414

QW-3414 MA1312-C P 1 2 3 A E L D E D A A E D A D D D D D E A C A C E D A A A C A C A C E E E D D D A C A C A A A A C A C A C E E C C E D D C C C E C E C C E C C C E D A C A C A C E L B B

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

05避難シミュレーション編.PDF

05避難シミュレーション編.PDF 1....5-2 1.1...5-2 1.2...5-2 1.3...5-4 1.4...5-5 1.5...5-8 1.6...5-8 1.7...5-9 1.8...5-19 2....5-21 5-1 5-2 ) ( ) / ( ) / ( ) ( 2 ( ) ( ) 5-3 1-1 5-4 ( 17 3 ) 1 ( 1) 1-2 ( )2 3 ( 5 ) 5 1 5 ( ) ( ) 1-2

More information

Software for FinePix AX4.2 ソフトウェア取扱ガイド

Software for FinePix AX4.2 ソフトウェア取扱ガイド 1 2 3 AX Version 4.2 for Windows and Macintosh AX4.2 y y BL00369-100(1) J 2 3 ImageMixer VCD2 for FinePix 4 5 q x x 6 7 8 9 10 11 1 2 3 4 5 1 2 3 4 5 12 1 x x 1 13 2 q 2 w e q w e 14 3 q 3 w e 15 r 3 t

More information

q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2

q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2 R 2001 9 R R S Splus R S 1 R 1: R 2 [File] [Exit] 1 q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2 2.1 7+3 1 10 7-3 7*3 7/3 7^3 2 > 7+3 [1] 10 > 7-3 [1] 4 > 7*3 [1]

More information

無印良品のスキンケア

無印良品のスキンケア 2 3 4 5 P.22 P.10 P.18 P.14 P.24 Na 6 7 P.10 P.22 P.14 P.18 P.24 8 9 1701172 1,400 1701189 1,000 1081267 1,600 1701257 2,600 1125923 450 1081250 1,800 1125916 650 1081144 1,800 1081229 1,500 Na 1701240

More information

統計的仮説検定とExcelによるt検定

統計的仮説検定とExcelによるt検定 I L14(016-01-15 Fri) : Time-stamp: 016-01-15 Fri 14:03 JST hig 1,,,, p, Excel p, t. http://hig3.net ( ) L14 Excel t I(015) 1 / 0 L13-Q1 Quiz : n = 9. σ 0.95, S n 1 (n 1)

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)

3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction) 1 (two-way ANOVA) - - A B 1 3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M=4 - - 1 (interaction) 4 - A - B (main effect) - A B (interaction) two-way ANOVA 5 1 A - H0: µ A 0 = µ A 1 = = µ A n - H1:

More information

1 R Windows R 1.1 R The R project web R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9

1 R Windows R 1.1 R The R project web   R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9 1 R 2007 8 19 1 Windows R 1.1 R The R project web http://www.r-project.org/ R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 95 and later ] [base] 2.5.1 R - 2.5.1 for Windows R

More information

270万回再生レポート

270万回再生レポート 270 270 2 2 Keynote(Mac) Camtasia PC VIdeo5 Point 2 Point 15 2 Point Point ) (2 2 3 2 3 Point 2 4 3 2 1 OK 100 4 10 20 2 75% Point 4 3 SEX Point SEX SEX SEX 2 SEX Point 2 2500 Point ( 100 Point

More information

2

2 1 2 119 119 5 500 1 30 102 1 113 3 4 120 2 3 113 5 230 1 1 3 4 5 6 7 8 1 [email protected] 2 9 3 ( ) 10 11 12 4 1. 2. 3. 4. 13 5 14 15 16 17 18 19 [ ] [ ] 20 [ ] [ ] [ ] 21 22 [ ] 23 < > < >

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

1 1 2 65

1 1 2 65 3 3 2000 6 14 2 30 4 2 1 1 2 65 1!?? < > 3 2 2 100 19 19 100 100 100 < > 19 2 2 2 2 < > 2000 2000 50 1945 5 50 1945 5 45 20 20 4 1945 4 5 5 5 100 50 20 5 2 20 5 20 5 5 6 20 6 19 5 5 6 5 6 2 20 6 21

More information

dicutil1_5_2.book

dicutil1_5_2.book Kabayaki for Windows Version 1.5.2 ...1...1 1...3...3 2...5...5...5...7...7 3...9...9...9...10...10...11...12 1 2 Kabayaki ( ) Kabayaki Kabayaki ( ) Kabayaki Kabayaki Kabayaki 1 2 1 Kabayaki ( ) ( ) CSV

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information