,.,.,,. [15],.,.,,., , 1., , 1., 1,., 1,,., 1. i

Size: px
Start display at page:

Download ",.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i"

Transcription

1 ( ) 19 1

2 ,.,.,,. [15],.,.,,., , 1., , 1., 1,., 1,,., 1. i

3 t t ii

4 iii

5 ,000-3, ,000-3, , (2,000, ) (2,000, ) (2,000, ) (2,000, ) (2,000, ) (2,000, ) (2,000-3,000, ) (2,000-3,000, ) (3,000-30,000, ) (3,000-30,000, ) ,000 ( 1) ,000 ( 2) ,000 ( 3) ,000-3, ,000-30, ,000 ( 1) ,000 ( 2) ,000 ( 3) ,000-3, ,000-30, Up Down t t t t iv

6 1 1.1,.,,.,.,,., ( ),.,,,,.,., [14], ( ), ( ), ,.,,,. [15],,.,,, (Up Down). Up Down 1. Up Down 1,., 1, , , : 2 :, ; 3 :,, ; 1

7 4 :., 1, , 1., 1, 2 ; 5 : 1,, ; 6 :. 2

8 2 2.1, 2.,,., ( ). (CDA: continuous double auction ), Cohen et al. [2], Luckock [7], Tang and Tian [13], Maslov [8], Slanina [11], Daniels et al. [3], Farmer et al. [4], Smith et al. [12].,,.,,,., [15], ( ) ( ),. 2.2,.,, /.,.,., ( ) ( ) ( ),,.,,.,,., 2.1.,,. 3

9 2.1:,, 2.,.,,.,. (depth). (Ask) (Bid) ( 2.2). 2.2:,.,., ( ) 4

10 ( ) ( ), ( ) ( ) ( )., :,, 2 ( ) ( ) 4.,. M/M/1.,., : (µa ) ra r A (2.1) f A (t) = t e (µ A+λ A )t I ra (2 µ A λ A t). (2.2) f B (t) =, λ A (µb λ B f A (t), f B (t) : ( ) ; ) rb r B t e (µ B+λ B )t I rb (2 µ B λ B t). r A, r B : ; µ A, λ A, µ B, λ B : 4 ; I r (z) 1, I r (z) = I r (z) = ( ( z )r z 2n 2) 2 n=0 n!(r + n)!., { 1, ρ A 1, (2.3) P A = P (T A ) = r ρ A A, ρ A > 1. { 1, ρ B 1, (2.4) P B = P (T B ) = r ρ B B, ρ B > 1. 5

11 , T A, T B P A, P B : ( ) ; : ( ) ; ρ A, ρ B : (ρ A = λ A /µ A, ρ B = λ B /µ B ).,, : ( (2.5) f U (t) = f A (t) 1 ( (2.6) f D (t) = f B (t) 1 t 0 t 0 ) f B (τ)dτ, ) f A (τ)dτ., ( ) P U (P D ), (2.7) P U = P (T U ) = (2.8) P D = P (T D ) = f U (t)dt = P A f A (t) t f D (t)dt = P B f B (t) t f B (τ)dτ. f A (τ)dτ.,,,, 1,.,,,,.., ( ), ( ),., ( ), ( ), ( ) 2 ( ),.,,., 2, r U A,r U B,r D A,r D B, 1. : 6

12 (2.9) P = ( ) P UU P UD P DU P DD (2.10) P UU = P U (r A U, r B U ) = f U (t)dt = P A f A (t)dt t f B (τ)dτ. (2.11) P DU = P U (r A D, r B D ) = f U (t)dt = P A f A (t)dt t f B (τ)dτ. (2.12) P UD = P D (r A U, r B U ) = f D (t)dt = P B f B (t)dt t f A (τ)dτ. (2.13) P DD = P D (r A D, r B D ) = f D t)dt = P B f B (t)dt t f A (τ)dτ. r A U, r B U, r A D, r B D :, ; P UU :, ; P UD :, ; P DU :, ; P DD :, 7

13 3 3.1,.,,., Niederhoffer and Osborne [10], Fielitz and Bhargava [6], Fielitz [5], McQuenn and Thorley [9].,,,. Fielitz and Bhargava [6], ,, 3 (Up, Down, No movement). 2., 200 (Order) ;,.,. McQuenn and Thorley [9], NYSE,, 2 (Up and Down) 2. 2., Niederhoffer and Osborne [10],., 6, /8dollar, Anderson and Goodman [1],.,,.,,, 1, , Nonparametric,,.,,,.,. 8

14 , 2 ( ), 2 1. : 1. S = U, D : ; 2. X t, t = 0, 1, 2,... :. X t = U X t = D; 3. n ijk : i, j, k ( n U,U,D 2 ); 4. n ijkl : i, j, k, l ; 5. P ij = P {X t = j X t 1 = i}; 6. P ijk = P {X t = k X t 1 = j, X t 2 = i}; 7. P ijkl = P {X t = l X t 1 = k, X t 2 = j, X t 3 = i};, Anderson and Goodman [1] 1 2.,,.,,,., (null hypothesis) u (uth-order), (alternative hypothesis) u + 1.,, P ijk = P jk, for i = 1, 2,..., m (i, k S; j S u ). (likelihood ratio criterion) : (3.1) λ = i,j,k( ˆP jk / ˆP ijk ) n ijk. P jk ˆP jk. (3.2) ˆPjk = i S n ijk / i S n ijk. k S 2 log λ, m u (m 1) 2 χ 2. m 2 (U D), u. 5%.,., m m m (3.3) 2 log λ = 2 n ijk (log P ijk log P jk ) i=1 j=1 k=1 9

15 m(m 1) 2 = 2, 2 log λ > 5.991,., 2. (3.4) 2 log λ = 2 m m m i=1 j=1 k=1 l=1 m n ijkl (log P ijkl log P jkl ) m 2 (m 1) 2 = 4, 2 log λ > 9.488,.,.,,., 5%, K. (3.5) K k=0 ( ) n 0.95 n k 0.05 k = k, n. K,. K, (, 1 ), (, 2 ) (, 3 ). 1,., : 1. ; 2. ;

16 , 1 1,497, 2 1,527, 3 1,609.,,,,., 1,, 1.,. : 1. :.. (a) :. (b) :. 2. :,.,, 3.1., 1.,,. 30,000,. 30,000, 2,000, 2,000 3,000 3,000 30, ,000 3,000 3,000 30,000,.,,. 3.1: 2, ,000,000 1,000 3, ,000,000 10,000 30, ,000,000 50,000 50, ,000, , ,

17 3.3.2,,, 1,.,.,,., 2.. 9,.,,,. 5%,.,.,,,,.., ( ) 20,,.,

18 4 4.1,,. 4.2,,,,. Group. Total. G1 G5,, 300 1, 5. G1 300, G5 4. Top100 Top : 1 ( ) 2 ( ) ( ) Group Total 1 76,808 1, ,633 1, ,459 2,190 Top50 9,116 76,808 18,248 8, ,633 19,591 12, ,459 31,305 Top100 5,503 76,808 12,671 5, ,633 13,348 7, ,459 20,592 G1 1,461 76,808 6,125 1, ,633 6,552 2, ,459 9,682 G , ,752 1, ,305 1,361 G G G ,., 3 2,.,, 2,000 Group Top50.,, (,, ).,,.,,.,,., 2,000-3,000 3,000-30,000 G1(Top300). 13

19 4.3: 1-1.5tick 1.5-2tick 2-3tick 3-4tick 4-5tick >=5tick K-tick. K-tick, K., K-tick,,., 3. 6, K-tick, 6,., %. 30%.,, : 3,000-3,

20 4.5: 2,000-3, : 2,

21 4.2, 1.,,,, 1,, , ( ) 2 (Up Down),, 1., 5% ,. : ( (4.1), P UU = P DU = n UU n UU + n UD ; P UD = n DU n DU + n DD ; P DD = P = n UD n UU + n UD ; P UU P DU n DD n DU + n DD n ij i, j. P UD P DD,, 1 ( 4511, ). ( ) , ,. 1,. ) 16

22 4.4: - 4.5: - 17

23 . 4.7: - 1(2,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

24 4.8: - 1(2,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

25 4.9: - 2(2,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

26 4.10: - 2(2,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

27 4.11: - 3(2,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

28 4.12: - 3(2,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

29 4.13: (2,000-3,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD : (2,000-3,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

30 4.15: (3,000-30,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD : (3,000-30,000, ) P uu P ud P du P dd P uu P ud P du P dd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

31 , ( ) ( ), , ( ) ( ), , 2 ( ).,, ,,,.,.. T, 1, F, : 1 2,000 ( 1) T T T T T T T T T T F T T T T T T T T T T T T T T T 26

32 4.18: 2,000 ( 2) F F T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 27

33 4.19: 1 2,000 ( 3) F F T T T T F F F F F F T T F F T T F F T T F F T T T T F F T T F F F T F F F F 28

34 4.20: 1 2,000-3, T T F T T T T T F F T T T F F F F F 4.21: 1 3,000-30, T T T T T T F F F F T T T T T T T F, , 3, , 1, 2,., 1 2.,, 1 1., 1, 2. 2, 1 29

35 . 1, 1, 3 (3.3), 2, 3 (3.4).,. 4.22: 2 2,000 ( 1) T T T T T T T T T T T T T T T T T T T T T T T T T T 30

36 4.23: 2 2,000 ( 2) T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 4.24: 2 2,000 ( 3) T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T F 31

37 4.25: 2 2,000-3, T T T T T T T T T T T T T T F T T T 4.26: 2 3,000-30, T T T T T T F F T T T T T T T T T T, 1, 2,. 2, 1.,,. 32

38 5,, 1.,,, , 3., 3 11,.,.,, 2, ,. 5.28,., u : ; d : ; u i d i : i ; : i ; R u ui = u i u ; R d d i = d i d.,. 4, 6. R u ui R d di,., 1, ( ). 33

39 5.27: Up u2 R u u2 u3 R u u3 u4 R u u4 u5 R u u5 u6 R u u6 u7 R u u u2 R u u2 u3 R u u3 u4 R u u4 u5 R u u5 u6 R u u6 u7 R u u

40 5.28: Down d2 R d d2 d3 R d d3 d4 R d d4 d5 R d d5 d6 R d d6 d7 R d d d2 R d d2 d3 R d d3 d4 R d d4 d5 R d d5 d6 R d d6 d7 R d d

41 5.2, 1,.,.,,,,.,, 1.,, 1., 1,,., ( ),, ( )., ( ), ( ),.,, 1, 1., 1, t t,,, 1., 1. ( ) ( ), 5% t , 5%. F,, T, 36

42 5.29: t t , , F , , T , , F , ,153, F , , F , , F ,690, ,380, T , , F , , F , , F , , F , , F , , T , , F , , F , , F , , F , , T , , F , , F , , F , , F 37

43 5.30: t t , , T , , T , , F , ,007, F , , F , , F ,411, ,344, T 127 2,214, ,779, F , , F , , F , , F , , F , , T , , F , , F , , F , , F , , F , , F , , F , , F , , F 38

44 ,.,, 1.,, t, 1 1., 1. ( ) 1, 5% t. 5.31: 1 t t ,406 21,506 21,101 16, F 3,153 23,239 19,259 16, F ,314 52,658 63,261 62, T 10,185 49,008 66,734 57, T ,614 12,251 25,201 14, T 1,975 9,155 23,244 12, T ,364 97,176 10,725 81, F 3,010 71,060 10,542 95, T ,010 71,060 10,542 95, T 4,182 12,339 23,851 14, T ,252 10,421 46,141 11, T 6,592 11,597 43,218 11, T ,781 13,952 60,832 12, F 3,964 10,626 59,209 12, T ,900 13,133 21,847 12, F 4,466 11,284 21,422 12, T ,287 23,237 36,739 19, F 6,580 23,927 40,447 19, F ,112 19,222 35,113 21, T 4,004 13,167 35,809 20, T ,162 7,130 96,878 6, F 16,156 6, ,484 6, T 39

45 5.32: 1 t t ,195 20,823 20,203 14, F 3,725 18,099 19,480 14, F ,138 50,597 64,602 47, F 7,682 44,458 67,734 46, T ,898 12,556 24,767 12, T 2,766 10,816 22,691 10, T , ,408 9,680 80, F 2,741 92,273 9,356 73, F ,297 13,423 24,393 14, T 5,888 12,674 20,669 13, T ,040 9,217 47,488 9, T 4,993 10,505 45,256 9, F ,478 11,882 59,013 11, F 5,463 12,987 55,716 11, F ,316 9,556 20,564 10, T 4,183 10,025 19,779 10, T ,661 18,885 35,919 16, F 6,166 20,367 38,427 16, F ,721 15,028 33,647 18, T 3,424 12,293 31,756 18, T ,769 5,740 93,533 6, T 15,955 6, ,641 5, F,. 1 1., 1. 1.,. 40

46 6 [2006] 1.,. 1, 1, ,,.,, , 1., , 1., 1., 1,,., 1.,,. 41

47 [1] Anderson, T.W., Goodman, L.A., Statistical inference about Markov chains, Annals of Mathematical Statistics 28(1957) [2] Cohen, K., Conroy, R. and Maier, S., Market Making and the Changing Structure of the Securities Industry, Rowman and Littlefield, Lanham (1985) [3] Daniels, M., Farmer, J., Iori, G. and Smith, E., Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process, Physical Review Letters, 90(2003) [4] Farmer, J., Patelli, P. and Zovko, I., The Predictive Power of Zero Intelligence in Financial Markets, Technical report, Santa Fe Institute Working Paper (2003). [5] Fielitz, B.D., On the stationarity of transition matrices of common stocks, Journal of Financial and Quantitative Analysis, 10(1975) [6] Fielitz, B.D., Bhargava, T.N., The behavior of stock-price relatives: A Markovian analysis, Operations Research, 21(1973) [7] Luckock, H., A Steady-State Model of the Continuous Double Auction, Quantitative Finance, 3(2003) [8] Maslov, S., Simple Model of a Limit Order-Driven Market, Physica A: Statistical Mechanics and Its Applications, 278(2000) [9] McQuenn, G., Thorley, S., Are stock returns predictable? A test using Markov chains, Journal of Finance, 46(1991) [10] Niederhoffer, V., Osborne, M., Market making and reversal on the stock exchange, Journal of the American Statistical Association, 61(1966) [11] Slanina, F., Mean-Field Approximation for a Limit Order Driven Market Model, Physical Review E, 64(2001) [12] Smith, E., Farmer, J., Gillemot, L. and Krishnamurthy, S., Statistical Theory of the Continuous Double Auction, Quantitative Finance, 3(2003) [13] Tang, L. and Tian, G., Reaction-Diffusion-Branching Models of Stock Price Fluctuations, Physica A: Statistical Mechanics and Its Applications, 264(1999)

48 [14],, [15],,, 16(2006)

49 ,,,.,,.,,.,. 44

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A) Discussion Paper Series A No.425 2002 2 186-8603 [email protected] 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

untitled

untitled 2009 57 2 393 411 c 2009 1 1 1 2009 1 15 7 21 7 22 1 1 1 1 1 1 1 1. 1 1 1 2 3 4 12 2000 147 31 1 3,941 596 1 528 1 372 1 1 1.42 350 1197 1 13 1 394 57 2 2009 1 1 19 2002 2005 4.8 1968 5 93SNA 6 12 1 7,

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: [email protected]., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

Journal of Economic Behavior & Organization Quarterly Journal of Economics Review of Economics and Statistics Internal Labor Markets and Manpower Analysis Economics of Education Review Journal of Political

More information

untitled

untitled financial report - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - -

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

M&A の経済分析:M&A はなぜ増加したのか

M&A の経済分析:M&A はなぜ増加したのか RIETI Discussion Paper Series 06-J-034 RIETI Discussion Paper Series 06-J-034 M&A の経済分析 :M&A はなぜ増加したのか 蟻川靖浩 宮島英昭 ( 早稲田大学 RIETI) 2006 年 4 月 要旨 1990 年代以降の M&A の急増の主要な要因は 産業や企業の成長性や収益性へのショックである とりわけ M&A を活発に行っている産業あるいは企業の特性としては

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit

ISSN NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the Universit ISSN 1346-5597 NII Technical Report Patent application and industry-university cooperation: Analysis of joint applications for patent in the University of Tokyo Morio SHIBAYAMA, Masaharu YANO, Kiminori

More information

Microsoft Word - Šv”|“Å‘I.DOC

Microsoft Word - Šv”|“Å‘I.DOC 90 ª ª * [email protected] i ii iii iv SNA 1 70 80 2 80 90 80 80 90 1 80 90 98 6 1 1 SNA 2 1 SNA 80 1SNA 1 19931998 1 2-190 1,2 2 2-2 2-3,4 3 2-5 4 2030 2-3 3 2-15 97 20 90 2-15 9198 1.

More information

競売不動産からみた首都圏地価の動向

競売不動産からみた首都圏地価の動向 E-mail : [email protected] http://bit.sikkou.jp STYLE m m LancasterRosen Suzaki and Ohta Nagai, Kondo and Ohta i P i n lnp i = + jln X ij + k D ik + TD i + i. m j =1 k =1 X ij j D ik k TD i

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

自殺の経済社会的要因に関する調査研究報告書

自殺の経済社会的要因に関する調査研究報告書 17 1 2 3 4 5 11 16 30,247 17 18 21,024 +2.0 6 12 13 WHO 100 14 7 15 2 5 8 16 9 10 17 11 12 13 14 15 16 17 II I 18 Durkheim(1897) Hamermesh&Soss(1974)Dixit&Pindyck(1994) Becker&Posner(2004) Rosenthal(1993)

More information

DocuPrint C5450 ユーザーズガイド

DocuPrint C5450 ユーザーズガイド 1 2 3 4 5 6 7 8 1 10 1 11 1 12 1 13 1 14 1 15 1 16 17 1 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 27 1 1 28 1 29 1 30 1 31 1 2 12 13 3 2 10 11 4 9 8 7 6 5 34 24 23 14 15 22 21 20 16 19 18 17 2 35

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

物流からみた九州地方の地域的都市システムの変容

物流からみた九州地方の地域的都市システムの変容 Working Paper Series Vol. 2009-05 2009 2 Working Paper 14 10 13 18 194-0298 4342 E-mail [email protected] 1 Pred 1977 1985 1994 2001 Murayama 1982,1984 Friedmann 1986 1994 2001 1 2 1979 1984 1991 2005

More information

わが国証券市場、証券業界の戦後70年

わが国証券市場、証券業界の戦後70年 I 70 Kiyoshi Nikami / / 1 70 2 2 3 4 70 1 1987 1990 2 072 2015 winter / No.406 5 II 4 4 3 18 Loan Contractor 3 2011 6 391 2012 spring 70 073 4 4 originating Manager 4 M.H. 1965 6 1987 12 074 2015 winter

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

C. R. McKenzie 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment group 1

C. R. McKenzie 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment group 1 KEIO UNIVERSITY MARKET QUALITY RESEARCH PROJECT (A 21 st Century Center of Excellence Project) DP2005-020 * C. R. McKenzie** 2003 3 2004 ( 38 ) 2 2004 2005 (Keio Household Panel Survey) control group treatment

More information

OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Br

OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Br IFRS. OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Brown et al. /n Benartzi and Thaler n /n Benartzi

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

IMES DISCUSSION PAPER SERIES Discuss ssion Paper No. 98-J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 203 IMES Discuss ssion Paper Series 98-J-2 1998 1 VaRVWAP E-mail: [email protected]

More information

Netcommunity SYSTEM αNXⅡ typeS/typeM 取扱説明書

Netcommunity SYSTEM αNXⅡ typeS/typeM 取扱説明書 2 3 4 5 6 7 1 2 3 4 5 6 8 3 3-38 1 2 3 4 5 9 1 2 3 10 4 5 11 6 12 1 1-2 1 1-3 1 1-4 1 1-5 1 micro SD 1-6 1 1-7 1 1 1-8 1 1-9 1 100 10 TEN 1 1-10 1 1-11 1 1-12 1 1-13 1 1-14 1 1 2 7 8 9 1 3 4 5 6 1-15 1

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理) 1768 2011 150-162 150 : Recurrence plots: Beyond visualization of time series Yoshito Hirata Institute of Industrial Science, The University of Tokyo voshito@sat. t.u\cdot tokvo.ac.ip 1 1. 1987 (Eckmann

More information

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i

2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF 3 2 2.1 CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i 1 Idiosyncratic,, Idiosyncratic (I- ) I- 1 I- I- Jensen I- Fama-French 3 I- Fama-French 3 1 Fama-French (FF) 3 [6] (Capital Asset Pricing Model; CAPM [12, 15]) CAPM ( [2, 10, 14, 16]) [18] Idiosyncratic

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community

More information

2 / 24

2 / 24 2017 11 9 1 / 24 2 / 24 Solow, 1957 total factor productivity; TFP 5% 経済成長率の要因分解 4% 3% 2.68% 2.51% 2% 1% 0% 1.63% 1.50% 0.34% 0.42% 0.55% 0.97% 1.14% 0.86% 0.13% -0.59% -0.59% -0.09% 0.01% -1% 1970-80

More information

平成○○年度知能システム科学専攻修士論文

平成○○年度知能システム科学専攻修士論文 A Realization of Robust Agents in an Agent-based Virtual Market Makio Yamashige 3 7 A Realization of Robust Agents in an Agent-based Virtual Market Makio Yamashige Abstract There are many people who try

More information

コピー ~ 5-森保.txt

コピー ~ 5-森保.txt NAOSITE: Nagasaki University's Ac Title 先物市場における高速取引が現物市場の流動性に与える影響 Author(s) 森保, 洋 Citation 経営と経済, 95(3-4), pp.95-115; 2016 Issue Date 2016-03-25 URL http://hdl.handle.net/10069/36324 Right This document

More information