k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

Size: px
Start display at page:

Download "k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k"

Transcription

1 k3 ( :07 ) ( k3) [email protected] web web : 4 3 AIC : (1) (2) χ

2 k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k = 1) (B) x 6 GLM (k = 7) GLM 1 (A) log λ = β 1, k = 1 1 (B) x 6 (log λ = β 1 + β 2 x + + β 7 x 6, k = 7) model selection AIC AIC AIC AIC GLM AIC 1 2 R 2 (k2) 100

3 k3 ( :07 ) 3 (A) k = (B) f k = (C) x k = (D) x + f k = x λ k (A) (B) f : (C) x : (D) x + f : y i?? R glm() 2 x i x ; 2 C;?? f i f ; 2 B;?? x + f ; 2 D;?? 3 2 ( ; 2 A 3 ; 2 ) λ exp β 1 β 1 4 maximum log likelihood 3 1 (A)

4 k3 ( :07 ) 4 2 : deviance 4 1 R glm() GLM log L({β j }) log L log L log L D = 2 log L log L -2 5 λ i x i λ i = exp(β 1 + β 2 x i ) x 2 C x log L (D = 2 log L ) log L D 2 log L D D D Null D Null D D glm()... Null Deviance: Residual Deviance: AIC: Null Deviance, Residual Deviance, AIC 3 residual deviance D ( ) R full model deviance -2 χ 2

5 k3 ( :07 ) x Deviance 2 log L () 89.5 (Null Deviance) 85.0 (Residual Deviance) deviance deviance (null deviance) (residual deviance) y i y i = {6, 6, 6, 12, 10, } 100 i {1, 2, 3} y i 6 {λ 1, λ 2, λ 3 } = {6, 6, 6} i = 4 y 4 12 λ 4 = 12 i = 5 y 5 10 λ 5 = log L 6 > sum(log(dpois(d$y, lambda = d$y))) [1] D = 2 log L = x D ( D) = = 85.0 glm() Residual Deviance: AIC: Residual Deviance R dpois() 100 {y i } {λ i } = {y 1, y 2, y 3, } i log L = 0

6 k3 ( :07 ) λ i = exp(β 1 ) β 1 k = 1 R null model 8 log λ i = β 1 2 A R glm() glm(y ~ 1,...) > fit.null <- glm(formula = y ~ 1, family = poisson, data = d) fit.null β Degrees of Freedom: 99 Total (i.e. Null); Null Deviance: Residual Deviance: AIC: Residual 89.5 > loglik(fit.null) log Lik (df=1) D k log L D = 2 log L 2 log L D 2 k 10 3 AIC GLM 8 null hypothesis 9 1 (A) 10 f 2 11??

7 k3 ( :07 ) 7 2 k log L Deviance Residual deviance 2 k log L Deviance Residual 2 log L deviance f x x + f AIC k log L Deviance Residual 2 log L deviance AIC f x x + f model selection model selection criterion AIC (Akaike s information criterion) AIC goodness of fitgoodness of prediction 12 k AIC AIC = 2 { } = 2(log L k) = D + 2k AIC 2 AIC 3 x AIC 13 AIC 4 statistical test 12 13?? GLM R stepaic()

8 k3 ( :07 ) 8 14 AIC likelihood ratio test parametric null hypothesis alternative hypothesis 14 15?? most powerful test AIC

9 k3 ( :07 ) 9 AIC ( ) ( ) 4 AIC 4 test statistic 22 95% 5% significant level 23 Neyman-Pearson 24 6 : 5 λ = exp(β 1 + β 2 x i ) GLM x : λ i x i β 2 = 0; k = 1 x : λ i x i β 2 0; k = Neyman-Pearson

10 k3 ( :07 ) 10 (A) (B) i y i x i yi x = = x i 5 (A) f i (B) 100 x x i ; x x i 4 x AIC 3 k log L Deviance Residual 2 log L deviance AIC x x likelihood ratio : L 1 L 2 = : exp( 237.6) x : exp( 235.4) -2 D 1,2 = 2 (log L 1 log L 2) 27 D 1 = 2 log L 1 D 2 = 2 log L 2 D 1,2 = D 1 D 2 D 1,2 x x D 1,2 = 4.5 x (A) (C) 3-2 D 1,2 χ 2 8.2

11 k3 ( :07 ) 11 5 D 1,2 ( ) ( ) () () 7 5 Neyman-Pearson : k = 1, β 2 = 0 : x k = 2, β Neyman-Pearson 9 5 : D 1,2 = 4.5 x β 2 0 type I error : x D 1,2 = 4.5 x β 2 = 0 type II error Neyman-Pearson 1 2 ˆβ 1 = 2.06 (p.6 ) 3 β 2 = 0(k = 1) β 2 0(k = 2) D 1,2 D 1, x alternative hypothesis

12 k3 ( :07 ) 12 ( ˆβ 1 = 2.06 ) x D 1,2 D 1,2 D 1,2 D 1, x D 1,2 ˆβ 1 = 2.06, p.6 D 1,2 4 x D 1,2 4.5 P D 1,2 = x D 1,2 4.5 P P P value P P : D 1,2 = 4.5 P : D 1,2 = 4.5 x! P Neyman-Pearson α 30 : P α : P < α : α α = P α

13 k3 ( :07 ) (1) P D 1,2 4.5 P P parametric bootstrap 32 χ 2 (PB) 6 R glm() x fit1 fit2 fit1 fit2 > fit2$deviance [1] x x D 1,2 > fit1$deviance - fit2$deviance [1] D 1, rpois() 100 > d$y.rnd <- rpois(100, lambda = mean(d$y)) mean(d$y) 7.85 glm() x glm() ˆβ 1 = 2.06 exp(2.06) = mean(d$y)

14 k3 ( :07 ) 14 > fit1 <- glm(y.rnd ~ 1, data = d, family = poisson) > fit2 <- glm(y.rnd ~ x, data = d, family = poisson) > fit1$deviance - fit2$deviance [1] x i 1.92 x : 1 mean(d$y) d$y.rnd 2 d$y.rnd,x glm() fit1, fit2 3 fit1$deviance - fit2$deviance PB D 1,2 34 PB R pb() 35 get.dd <- function(d) # { n.sample <- nrow(d) # y.mean <- mean(d$y) # d$y.rnd <- rpois(n.sample, lambda = y.mean) fit1 <- glm(y.rnd ~ 1, data = d, family = poisson) fit2 <- glm(y.rnd ~ x, data = d, family = poisson) fit1$deviance - fit2$deviance # } pb <- function(d, n.bootstrap) { sapply(1:n.bootstrap, get.dd, d) } pb.r 36 R R pb.r pb() bootstrap method fit1 fit2$null.deviance - fit2$deviance D 1,2 web ( )

15 k3 ( :07 ) D 1,2 = x D 1,2 7 D 1,2 D 1, x D 1,2 = 4.5 > source("pb.r") # pb.r > dd12 <- pb(d, n.bootstrap = 1000) R D 1, dd12 summary() > summary(dd12) Min. 1st Qu. Median Mean 3rd Qu. Max e e e e e e+01 7 D 1,2 4.5 > hist(dd12, 100) > abline(v = 4.5, lty = 2) 1000 D 1,2 4.5 > sum(dd12 >= 4.5) [1] / 1000 P = P = 0.05 D 1, D 1, n.bootstrap P = α D 1,2 (critical point) D 1,2 (critical region rejection region)

16 > quantile(dd12, 0.95) 95% k3 ( :07 ) 16 5% D 1, P significantly different 40 x 8.2 (2) χ 2 PB 7 41 fit1 fit2 x > fit1 <- glm(y ~ 1, data = d, family = poisson) > fit2 <- glm(y ~ x, data = d, family = poisson) anova() 42 > anova(fit1, fit2, test = "Chisq") Analysis of Deviance Table Model 1: y ~ 1 Model 2: y ~ x Resid. Df Resid. Dev Df Deviance P(> Chi ) D 1, χ 2 χ 2 distribution 39?? 40 P Neyman-Pearson P < α anova() ANOVA analysis of variance analysis of deviance 43 x

17 k3 ( :07 ) 17 "Chisq" χ 2 D 1,2 4.5 P P PB P = χ "Chisq" P PB 44 χ 2 t F 9 α = 0.05 D 1,2 P < α P α fail to reject Neyman-Pearson 45 Neyman-Pearson 7 P < α P α 5 P 2 46 Neyman-Pearson P P 2 P 2 1 P 2 ; power PB β β 1 P 2 47

18 k3 ( :07 ) AIC AIC Neyman-Pearson AIC P < α AIC P effect size

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

(2/24) : 1. R R R

(2/24) : 1. R R R R? http://hosho.ees.hokudai.ac.jp/ kubo/ce/2004/ : [email protected] (2/24) : 1. R 2. 3. R R (3/24)? 1. ( ) 2. ( I ) : (p ) : cf. (power) p? (4/24) p ( ) I p ( ) I? ( ) (5/24)? 0 2 4 6 8 A B A B (control)

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

1 15 R Part : website:

1 15 R Part : website: 1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

201711grade2.pdf

201711grade2.pdf 2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

Use R

Use R Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,

More information

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71 2010-12-02 (2010 12 02 10 :51 ) 1/ 71 GCOE 2010-12-02 WinBUGS [email protected] http://goo.gl/bukrb 12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? 2010-12-02 (2010 12

More information

こんにちは由美子です

こんにちは由美子です Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21

1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21 1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 [email protected] 2013/11/21 2 予定 第 1 回 : Rの基礎と仮説検定 第 2 回 : 分散分析と回帰 第 3 回 : 一般線形モデル 交互作用 第 4.1 回 : 一般化線形モデル 第 4.2 回 : モデル選択 (11/29?) 第 5 回 : 一般化線形混合モデル

More information

kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

kubo2017sep16a p.1 ( 1 ) :   : :55 kubo (  ( 1 ) / 10 kubo2017sep16a p.1 ( 1 ) [email protected] 2017 09 16 : http://goo.gl/8je5wh : 2017 09 13 16:55 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 1 / 106 kubo (http://goo.gl/ufq2) ( 1 ) 2017 09 16 2 / 106

More information

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i kubostat2017j p.1 2017 (j) Categorical Data Analsis [email protected] http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G

More information

DAA09

DAA09 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349

More information

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv(h:=y=ynikkei4csv,header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)

More information

統計研修R分散分析(追加).indd

統計研修R分散分析(追加).indd http://cse.niaes.affrc.go.jp/minaka/r/r-top.html > mm mm TRT DATA 1 DM1 2537 2 DM1 2069 3 DM1 2104 4 DM1 1797 5 DM2 3366 6 DM2 2591 7 DM2 2211 8

More information

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説

(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説 第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest

More information

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」 URL: http://tsigeto.info/statg/ I () 3 2016 2 ( 7F) 1 : (1); (2) 1998 (70 20% 6 9 ) (30%) ( 2) ( 2) 2 1. (4/14) 2. SPSS (4/21) 3. (4/28) [] 4. (5/126/2) [1, 4] 5. (6/9) 6. (6/166/30) [2, 5] 7. (7/78/4)

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

2 と入力すると以下のようになる > x1<-c(1.52,2,3.01,9,2,6.3,5,11.2) > y1<-c(4,0.21,-1.5,8,2,6,9.915,5.2) > cor(x1,y1) [1] > cor.test(x1,y1) Pearson's produ

2 と入力すると以下のようになる > x1<-c(1.52,2,3.01,9,2,6.3,5,11.2) > y1<-c(4,0.21,-1.5,8,2,6,9.915,5.2) > cor(x1,y1) [1] > cor.test(x1,y1) Pearson's produ 1 統計 データ解析セミナーの予習 2010.11.24 粕谷英一 ( 理 生物 生態 ) GCOE アジア保全生態学 本日のメニュー R 一般化線形モデル (Generalized Linear Models 略して GLM) R で GLM を使う R でグラフを描く 説明しないこと :R でできること全般 たくさんあるので時間的に無理 R でするプログラミング-データ解析なら使いやすい R 起動と終了

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr 1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.

More information

/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )

/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 1/ 55 ( II) : (2012 1 ) 2 2 (GLM) 2012 01 25! [email protected] http://g.gl/76c4i 2012 01 25 2/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM ) 2012 01 25 3/ 55 1. : 2.

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

2.1 R, ( ), Download R for Windows base. R ( ) R win.exe, 2.,.,.,. R > 3*5 # [1] 15 > c(19,76)+c(11,13)

2.1 R, ( ),   Download R for Windows base. R ( ) R win.exe, 2.,.,.,. R > 3*5 # [1] 15 > c(19,76)+c(11,13) 3 ( ) R 3 1 61, 2016/4/7( ), 4/14( ), 4/21( ) 1 1 2 1 2.1 R, ( )................ 2 2.2 ggm............................ 3 2.3,................ 4 2.4...................................... 6 2.5 1 ( )....................

More information

2009 5 1...1 2...3 2.1...3 2.2...3 3...10 3.1...10 3.1.1...10 3.1.2... 11 3.2...14 3.2.1...14 3.2.2...16 3.3...18 3.4...19 3.4.1...19 3.4.2...20 3.4.3...21 4...24 4.1...24 4.2...24 4.3 WinBUGS...25 4.4...28

More information

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

卒業論文

卒業論文 Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1

More information

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

/22 R MCMC R R MCMC? 3. Gibbs sampler :   kubo/ 2006-12-09 1/22 R MCMC R 1. 2. R MCMC? 3. Gibbs sampler : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/ 2006-12-09 2/22 : ( ) : : ( ) : (?) community ( ) 2006-12-09 3/22 :? 1. ( ) 2. ( )

More information

!!! 2!

!!! 2! 2016/5/17 (Tue) SPSS ([email protected])! !!! 2! 3! 4! !!! 5! (Population)! (Sample) 6! case, observation, individual! variable!!! 1 1 4 2 5 2 1 5 3 4 3 2 3 3 1 4 2 1 4 8 7! (1) (2) (3) (4) categorical

More information

インターネットを活用した経済分析 - フリーソフト Rを使おう

インターネットを活用した経済分析 - フリーソフト Rを使おう R 1 1 1 2017 2 15 2017 2 15 1/64 2 R 3 R R RESAS 2017 2 15 2/64 2 R 3 R R RESAS 2017 2 15 3/64 2-4 ( ) ( (80%) (20%) 2017 2 15 4/64 PC LAN R 2017 2 15 5/64 R R 2017 2 15 6/64 3-4 R 15 + 2017 2 15 7/64

More information

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

2 [email protected] http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関 R によるパネルデータモデルの推定 R を用いて 静学的パネルデータモデルに対して Pooled OLS, LSDV (Least Squares Dummy Variable) 推定 F 検定 ( 個別効果なしの F 検定 ) GLS(Generalized Least Square : 一般化最小二乗 ) 法による推定 およびハウスマン検定を行うやり方を 動学的パネルデータモデルに対して 1 階階差

More information

こんにちは由美子です

こんにちは由美子です Sample size power calculation Sample Size Estimation AZTPIAIDS AIDSAZT AIDSPI AIDSRNA AZTPr (S A ) = π A, PIPr (S B ) = π B AIDS (sampling)(inference) π A, π B π A - π B = 0.20 PI 20 20AZT, PI 10 6 8 HIV-RNA

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

2 / 39

2 / 39 W707 [email protected] 1 / 39 2 / 39 1 2 3 3 / 39 q f (x; α) = α j B j (x). j=1 min α R n+2 n ( d (Y i f (X i ; α)) 2 2 ) 2 f (x; α) + λ dx 2 dx. i=1 f B j 4 / 39 : q f (x) = α j B j (x). j=1 : x

More information

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30 PlotNet 6 ( ) 2006-01-19 TOEF(1998 2004), AM, growth6 DBH growth (mm) 1998 1999 2000 2001 2002 2003 2004 10 20 30 40 50 70 DBH (cm) 1. 2. - - : [email protected] http://hosho.ees.hokudai.ac.jp/ kubo/show/2006/plotnet/

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P + Armitage 1 1.1 2 t *1 α β 1.2 µ x µ 2 2 2 α β 2.1 1 α β α ( ) β *1 t t 1 α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β 1 0 0 1 1 5 2.5 *3 2.3 *4 3 3.1 1 1 1 *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information