…J…−†[†E…n…‘†[…hfi¯„^‚ΛžfiüŒå
|
|
|
- とき いしなみ
- 6 years ago
- Views:
Transcription
1 II
2
3 [A] D B A B A B A B
4
5 DVD
6 y = 2x + 5 x = 3 y = 11 x = 5 y = 15.
7 Google Web
8
9 (2 + 3)
10
11
12 Windows Media Player Media Player
13
14 (typed lambda calculus)
15 (computer science)
16
17
18
19 f(x) = (x + 3) 5 (x + 3) 5
20 (2 + 3) ! (2+3)!5
21 (x + 3) ! ( +3)!5
22 (x + 3) 5 x 3 5 +! (x+3)!5
23 (x + 3) 5
24 (x + 3) 5 x 3 5 +! (x+3)!5
25 x 3 5 +! (x+3)!5
26 λx.((x + 3) 5)
27 λx.((x + 3) 5) x 3 5 +! (x+3)!5
28 λx.((x + 3) 5) x (x + 3) 5
29 x 3 5 +! (x+3)!5
30 (x + 3) 5 x
31 (x + 3) 5 x x
32 (x + 3) 5 x (x + 3) 5 (x + 3) 5 x
33 x x : int x x int integer int
34 (x + 3) 5 x (x + 3) 5 : int x : int
35 λx.((x + 3) 5) x 3 5 +! (x+3)!5
36 λx.((x + 3) 5) x (x + 3) 5 λx.((x + 3) 5) : int int
37 λx.((x + 3) 5) : int int A B A B
38 x (x + 3) 5 x : int (x + 3) 5 : int λx.((x + 3) 5) : int int
39 [x : int]. (x + 3) 5 : int λx.((x + 3) 5) : int int λx.((x + 3) 5)
40 [x : A] D M : B λx.m : A B (abs) x A B M λx.m
41 [x : A] D M : B λx.m : A B (abs) λx.m A B A B x : A
42 [x : A] D M : B λx.m : A B (abs) (λ-abstraction)
43
44 λx.((x + 3) 5) : int int 2 (λx.((x + 3) 5)) 2 λx.((x + 3) 5) 2
45 2 (λx.((x + 3) 5)) 2 λx.((x + 3) 5) (λx.((x + 3) 5)) λx.((x + 3) 5)
46 2 (λx.((x + 3) 5)) M N M M M : A B 2 : int
47 (λx.((x + 3) 5)) λx.((x + 3) 5) λx.((x + 3) 5) : int int
48 M : A B N : A (app) MN : B M A B A B
49 M : A B N : A (app) MN : B
50
51 int (char) (Boolean) int int int (int int) (int int) (int int)
52 + + : int (int int) : int (int int)
53 [x : A] D M : B λx.m : A B M : A B N : A MN : B
54 λx.((x + 3) 5) + : i (i i) [x : i] x + : i i 3 : i : i (i i) (x + 3) : i (x + 3) : i i 5 : i ((x + 3) 5) : i λx.((x + 3) 5) : i i int i x 3 5 +! (x+3)!5
55
56 λx.((x + 3) 5) (typed lambda calculus)
57
58
59 (λx.((x + 3) 5)) 2
60 λx.((x + 3) 5) 3 5 +! ( +3)!5
61 (λx.((x + 3) 5)) 2 2 ( +3)!5 + 3! 5
62 (λx.((x + 3) 5)) 2 (2 + 3) ! (2+3)!5
63 x (λx.((x + 3) 5)) 2 (2 + 3) 5 = 25
64 (λx.((x + 3) 5)) 2 (2 + 3) 5 = 25 (λx.((x + 3) 5)) 3 (3 + 3) 5 = 30 (λx.((x + 3) 5)) 4 (4 + 3) 5 = 35.
65 β (λx.m)n M[x := N] (β-reduction)
66 [x : A] D M : B λx.m : A B M : A B N : A MN : B (λx.m)n M[x := N]
67 [x : A] D M : B λx.m : A B M : A B N : A MN : B (λx.m)n M[x := N]
68 .. λy.n 1 : A B. N 2 : A λx.m : B C (λy.n 1 )N 2 : B (λx.m)((λy.n 1 ) N 2 ) : C λy.n 1 N 2 λx.m
69 (λx.m)((λy.n 1 ) N 2 ) λy.n 1 N 2 λx.m 1 (λx.m)((λy.n 1 )N 2 ) (λx.m)(n 1 [y := N 2 ]) λx.m N 1 [y := N 2 ]
70 .. λx.m : B C N 1 [y := N 2 ] : B? (λx.m)(n 1 [y := N 2 ]) : C? N 1 [y := N 2 ] B λx.m
71 (λx.m)n : B M[x := N] : B
72 (λx.m)n M[x := N] (λx.m)n. D 1 λx.m : A B N : A (λx.m)n : B
73 (λx.m)n M[x := N] [x : A] D 0 M : B λx.m : A B (λx.m)n : B D 1 N : A
74 (λx.m)n M[x := N] [x : A] D 0 M : B λx.m : A B (λx.m)n : B D 1 N : A
75 (λx.m)n M[x := N] D 1 N : A D 0 [x := N] M[x := N] : B
76 [x : A] D 0 M : B λx.m : A B (λx.m)n : B D 1 N : A D 1 N : A D 0 [x := N] M[x := N] : B x N x N
77
78 x 3 5 +! (x+3)!5
79 [x : A] D M : B λx.m : A B M : A B N : A MN : B
80 + : i (i i) [x : i] x + : i i 3 : i : i (i i) (x + 3) : i (x + 3) : i i 5 : i ((x + 3) 5) : i λx.((x + 3) 5) : i i
81 (λx.m)n M[x := N] [x : A] D 0 M : B λx.m : A B (λx.m)n : B D 1 N : A D 1 N : A D 0 [x := N] M[x := N] : B
82 [x : A] D M : B λx.m : A B M : A B N : A MN : B (λx.m)n M[x := N]
83
84
85 Recall
86 [x : A] D M : B λx.m : A B [A] D B A B M : A B N : A MN : B A B A B
87
88 [x : A] D M : B λx.m : A B [A] D B A B λx.m
89 M : A B N : A MN : B A B A B M N
90 A x : A
91 [A (B C)] [A] [A B] [A] B C B C A C (A B) (A C) (A (B C)) ((A B) (A C))
92 [x : A (B C)] [y : A] [z : A B] [y : A] xy : B C zy : B (xy)(zy) : C λy.((xy)(zy)) : A C λzλy.((xy)(zy)) : (A B) (A C) λxλzλy.((xy)(zy)) : (A (B C)) ((A B) (A C))
93 = = =
94 (λx.m)n M[x := N] [x : A] D 0 M : B λx.m : A B (λx.m)n : B D 1 N : A D 1 N : A D 0 [x := N] M[x := N] : B
95 [x : A] D 0 M : B λx.m : A B (λx.m)n : B D 1 N : A D 1 N : A D 0 [x := N] M[x := N] : B
96 [A] D 0 B A B B D 1 A D 1 A D 0 B
97 [A] D 0 B A B B D 1 A
98 [A] D 0 B A B B D 1 A D 1 A A A
99 [A] D 0 B A B B D 1 A [A] D 0 B A B A B A B
100 [A] D 0 B A B B D 1 A A B A B
101 1. A 2. A B A B 3. A B A B B 1. A 2. A B B
102 [A] D 0 B A B B D 1 A D 1 A D 0 B A B
103 [A] D 0 B A B B D 1 A D 1 A D 0 B (reduction)
104
105 [A] D 0 B A B B D 1 A B
106 [A] D 0 B A B B D 1 A B A B A A B A B
107 [A] D 0 B A B B D 1 A A D 0 B B B A A B
108 [A] D 0 B A B B D 1 A D 1 A D 0 B B
109
110 [x : A] D M : B λx.m : A B [A] D B A B M : A B N : A MN : B A B A B
111 [x : A] D 0 M : B λx.m : A B (λx.m)n : B [A] D 0 B A B B D 1 N : A D 1 A D 1 N : A D 0 [x := N] M[x := N] : B D 1 A D 0 B
112 = = =
113
114 [2005]
115
116
117 [2005]
118
I: 2 : 3 +
I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN
24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
untitled
20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -
untitled
19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X
FX ) 2
(FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100
23 15961615 1659 1657 14 1701 1711 1715 11 15 22 15 35 18 22 35 23 17 17 106 1.25 21 27 12 17 420,845 23 32 58.7 32 17 11.4 71.3 17.3 32 13.3 66.4 20.3 17 10,657 k 23 20 12 17 23 17 490,708 420,845 23
平成18年度「商品先物取引に関する実態調査」報告書
... 1.... 5-1.... 6-2.... 9-3.... 10-4.... 12-5.... 13-6.... 15-7.... 16-8.... 17-9.... 20-10.... 22-11.... 24-12.... 27-13... 29-14.... 32-15... 37-16.... 39-17.... 41-18... 43-19... 45.... 49-1... 50-2...
<4D6963726F736F667420576F7264202D2081A193B98BE257656290EA97708CFB8DC08B4B92E88179918D8D878CFB8DC0817A816990568B4B816A81798A6D92E894C5817A2E646F63>
( )
Web Web 1 3 1 21 11 22 23 24 3 2 3 4 5 1 1 11 22 9 2 3 15 11 22 2 11 21 4 5 ( ) 102 ( ) 1 ( 1 2001 Web 1 5 4 1 1 - 7 - [] - 7 10 11 12 12 1 10 1 12 - [] 1 1 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 3 1 47
夏目小兵衛直克
39(1906)1222 14(1817) 3(1832)1514(1843) 2628 6 (1853) (1854)3727 3(1856) 1 / 13 5(1858)6(1859) 5(1853) () () () () () () 3(1867)29 504111( 2 / 13 )98 23 18 2(1869)310283 100 50() 58 226 3313200982 5033
働く女性の母性健康管理、母性保護に関する法律のあらまし
17 1 3 3 12 3 13 10 19 21 22 22 23 26 28 33 33 35 36 38 39 1 I 23 2435 36 4/2 4/3 4/30 12 13 14 15 16 (1) 1 2 3 (2) 1 (1) (2)(1) 13 3060 32 3060 38 10 17 20 12 22 22 500 20 2430m 12 100 11 300m2n 2n
ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4
20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d
Chap9.dvi
.,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim
ランダムウォークの境界条件・偏微分方程式の数値計算
B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38 L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1
02
54 163116831 02 1 168 54 158 53 162 53 148 52 152 52 10,000 0 40,000 30,000 20,000 50,000 70,000 60,000 1,000 500 1,500 2,000 0 2,500 3,000 4,000 3,500 4,500 168 54 158 53 162 53 148 52 152 52 03 52148
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
BA-100_Ver3.05
JA Windows 1 2 3 4 5 6 7 8 10 1 1 2 11 1 2 3 12 1 1 1 13 1 2 3 1 2 3 14 4 1 5 6 7 2 3 15 16 17 18 19 20 21 22 1 2 3 23 24 25 26 1 2 3 1 2 27 1 2 3 1 28 2 3 4 1 2 1 2 3 4 29 5 6 1 2 3 1 2 3 4 1 2 3 30
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
1... 5 2... 6 3... 7 4... 8 4.1... 8 4.2... 9 4.3... 9 4.4 SMTP... 10 5 2... 11 5.1 FP Mail... 11 5.2 MX... 11 6 3 /... 12 6.1... 12 6.2... 12 6.3...
1... 5 2... 6 3... 7 4... 8 4.1... 8 4.2... 9 4.3... 9 4.4 SMTP... 10 5 2... 11 5.1 FP Mail... 11 5.2 MX... 11 6 3 /... 12 6.1... 12 6.2... 12 6.3... 12 6.4... 12 6.5... 12 7 4... 13 7.1 URL... 13 8 5...
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E
5 1 1 1.1 2 159 O O PQ RS OR P = PQ P O M MQ O (1) M P (2) P : P R : R () PR P 160 > M : = M : M X (1) N = N M // N X M (2) M 161 (1) E = 8 = 4 = = E = (2) : = 2 : = E = E F 5 F EF F E 5 1 159 (1) PQ (2)
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2
1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
1. A0 A B A0 A : A1,...,A5 B : B1,...,B
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)
.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,
.1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = N N 0 x, y x y N x y (mod N) x y N mod N mod N N, x, y N > 0 (1) x x (mod N) (2) x y (mod N) y x
A( ) 1 1.1 12 3 15 3 9 3 12 x (x ) x 12 0 12 1.1.1 x x = 12q + r, 0 r < 12 q r 1 N > 0 x = Nq + r, 0 r < N q r 1 q x/n r r x mod N 1 15 mod 12 = 3, 3 mod 12 = 3, 9 mod 12 = 3 1.1.2 N N 0 x, y x y N x y
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
Flash Player ローカル設定マネージャー
ADOBE FLASH PLAYER http://help.adobe.com/ja_jp/legalnotices/index.html iii................................................................................................................. 1...........................................................................................................
Microsoft Word - hozon-fujimura-HP-伊勢工業高校における造船教育の歴史から学ぶ20160713
1233 1 600 300 1578 1636 1800 Google 2 3 1853 1854 2000 1842 1848 300 1800 4 300 800 5 6 7 8 9 10 14 6 2 4 3 1 2 1 13 3 3 3 1 3 3 1 1 1 10 1 14 14 2 23 3 136 1 72 1 6 1 22 2 236 12 236 11 10% 7% 16% 17%
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
